 |
PDBsum entry 1bmc
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Hydrolase (acting in cyclic amides)
|
PDB id
|
|
|
|
1bmc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
Embo J
14:4914-4921
(1995)
|
|
PubMed id:
|
|
|
|
|
| |
|
The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold.
|
|
A.Carfi,
S.Pares,
E.Duée,
M.Galleni,
C.Duez,
J.M.Frère,
O.Dideberg.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The 3-D structure of Bacillus cereus (569/H/9) beta-lactamase (EC 3.5.2.6),
which catalyses the hydrolysis of nearly all beta-lactams, has been solved at
2.5 A resolution by the multiple isomorphous replacement method, with density
modification and phase combination, from crystals of the native protein and of a
specially designed mutant (T97C). The current model includes 212 of the 227
amino acid residues, the zinc ion and 10 water molecules. The protein is folded
into a beta beta sandwich with helices on each external face. To our knowledge,
this fold has never been observed. An approximate internal molecular symmetry is
found, with a 2-fold axis passing roughly through the zinc ion and suggesting a
possible gene duplication. The active site is located at one edge of the beta
beta sandwich and near the N-terminal end of a helix. The zinc ion is
coordinated by three histidine residues (86, 88 and 149) and a water molecule. A
sequence comparison of the relevant metallo-beta-lactamases, based on this
protein structure, highlights a few well-conserved amino acid residues. The
structure shows that most of these residues are in the active site. Among these,
aspartic acid 90 and histidine 210 participate in a proposed catalytic mechanism
for beta-lactam hydrolysis.
|
|
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
L.E.Horsfall,
Y.Izougarhane,
P.Lassaux,
N.Selevsek,
B.M.Liénard,
L.Poirel,
M.B.Kupper,
K.M.Hoffmann,
J.M.Frère,
M.Galleni,
and
C.Bebrone
(2011).
Broad antibiotic resistance profile of the subclass B3 metallo-β-lactamase GOB-1, a di-zinc enzyme.
|
| |
FEBS J,
278,
1252-1263.
|
 |
|
|
|
|
 |
L.Sun,
L.Zhang,
H.Zhang,
and
Z.G.He
(2011).
Characterization of a Bifunctional β-Lactamase/Ribonuclease and Its Interaction with a Chaperone-Like Protein in the Pathogen Mycobacterium tuberculosis H37Rv.
|
| |
Biochemistry (Mosc),
76,
350-358.
|
 |
|
|
|
|
 |
A.L.Stamp,
P.Owen,
K.E.Omari,
C.E.Nichols,
M.Lockyer,
H.K.Lamb,
I.G.Charles,
A.R.Hawkins,
and
D.K.Stammers
(2010).
Structural and functional characterization of Salmonella enterica serovar Typhimurium YcbL: an unusual Type II glyoxalase.
|
| |
Protein Sci,
19,
1897-1905.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.C.Cantu,
Y.Chen,
and
P.J.Reilly
(2010).
Thioesterases: a new perspective based on their primary and tertiary structures.
|
| |
Protein Sci,
19,
1281-1295.
|
 |
|
|
|
|
 |
J.D.Docquier,
M.Benvenuti,
V.Calderone,
M.Stoczko,
N.Menciassi,
G.M.Rossolini,
and
S.Mangani
(2010).
High-resolution crystal structure of the subclass B3 metallo-beta-lactamase BJP-1: rational basis for substrate specificity and interaction with sulfonamides.
|
| |
Antimicrob Agents Chemother,
54,
4343-4351.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.N.Lisa,
L.Hemmingsen,
and
A.J.Vila
(2010).
Catalytic role of the metal ion in the metallo-beta-lactamase GOB.
|
| |
J Biol Chem,
285,
4570-4577.
|
 |
|
|
|
|
 |
P.Oelschlaeger,
N.Ai,
K.T.Duprez,
W.J.Welsh,
and
J.H.Toney
(2010).
Evolving carbapenemases: can medicinal chemists advance one step ahead of the coming storm?
|
| |
J Med Chem,
53,
3013-3027.
|
 |
|
|
|
|
 |
V.A.Campos-Bermudez,
J.M.González,
D.L.Tierney,
and
A.J.Vila
(2010).
Spectroscopic signature of a ubiquitous metal binding site in the metallo-β-lactamase superfamily.
|
| |
J Biol Inorg Chem,
15,
1209-1218.
|
 |
|
|
|
|
 |
B.Meier,
L.J.Barber,
Y.Liu,
L.Shtessel,
S.J.Boulton,
A.Gartner,
and
S.Ahmed
(2009).
The MRT-1 nuclease is required for DNA crosslink repair and telomerase activity in vivo in Caenorhabditis elegans.
|
| |
EMBO J,
28,
3549-3563.
|
 |
|
|
|
|
 |
C.Bebrone,
H.Delbrück,
M.B.Kupper,
P.Schlömer,
C.Willmann,
J.M.Frère,
R.Fischer,
M.Galleni,
and
K.M.Hoffmann
(2009).
The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site.
|
| |
Antimicrob Agents Chemother,
53,
4464-4471.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.Simona,
A.Magistrato,
M.Dal Peraro,
A.Cavalli,
A.J.Vila,
and
P.Carloni
(2009).
Common mechanistic features among metallo-beta-lactamases: a computational study of Aeromonas hydrophila CphA enzyme.
|
| |
J Biol Chem,
284,
28164-28171.
|
 |
|
|
|
|
 |
J.Morán-Barrio,
A.S.Limansky,
and
A.M.Viale
(2009).
Secretion of GOB metallo-beta-lactamase in Escherichia coli depends strictly on the cooperation between the cytoplasmic DnaK chaperone system and the Sec machinery: completion of folding and Zn(II) ion acquisition occur in the bacterial periplasm.
|
| |
Antimicrob Agents Chemother,
53,
2908-2917.
|
 |
|
|
|
|
 |
R.Singh,
A.Saxena,
and
H.Singh
(2009).
Identification of group specific motifs in Beta-lactamase family of proteins.
|
| |
J Biomed Sci,
16,
109.
|
 |
|
|
|
|
 |
A.Tamilselvi,
and
G.Mugesh
(2008).
Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues.
|
| |
J Biol Inorg Chem,
13,
1039-1053.
|
 |
|
|
|
|
 |
A.Yamamura,
J.Ohtsuka,
K.Kubota,
Y.Agari,
A.Ebihara,
N.Nakagawa,
K.Nagata,
and
M.Tanokura
(2008).
Crystal structure of TTHA1429, a novel metallo-beta-lactamase superfamily protein from Thermus thermophilus HB8.
|
| |
Proteins,
73,
1053-1057.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Jeon,
W.Muraoka,
O.Sahin,
and
Q.Zhang
(2008).
Role of Cj1211 in natural transformation and transfer of antibiotic resistance determinants in Campylobacter jejuni.
|
| |
Antimicrob Agents Chemother,
52,
2699-2708.
|
 |
|
|
|
|
 |
L.A.Abriata,
L.J.González,
L.I.Llarrull,
P.E.Tomatis,
W.K.Myers,
A.L.Costello,
D.L.Tierney,
and
A.J.Vila
(2008).
Engineered mononuclear variants in Bacillus cereus metallo-beta-lactamase BcII are inactive.
|
| |
Biochemistry,
47,
8590-8599.
|
 |
|
|
|
|
 |
M.I.Page,
and
A.Badarau
(2008).
The mechanisms of catalysis by metallo beta-lactamases.
|
| |
Bioinorg Chem Appl,
(),
576297.
|
 |
|
|
|
|
 |
P.E.Tomatis,
S.M.Fabiane,
F.Simona,
P.Carloni,
B.J.Sutton,
and
A.J.Vila
(2008).
Adaptive protein evolution grants organismal fitness by improving catalysis and flexibility.
|
| |
Proc Natl Acad Sci U S A,
105,
20605-20610.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Gupta
(2008).
Metallo beta lactamases in Pseudomonas aeruginosa and Acinetobacter species.
|
| |
Expert Opin Investig Drugs,
17,
131-143.
|
 |
|
|
|
|
 |
Z.Hu,
G.Periyannan,
B.Bennett,
and
M.W.Crowder
(2008).
Role of the Zn1 and Zn2 sites in metallo-beta-lactamase L1.
|
| |
J Am Chem Soc,
130,
14207-14216.
|
 |
|
|
|
|
 |
F.Simona,
A.Magistrato,
D.M.Vera,
G.Garau,
A.J.Vila,
and
P.Carloni
(2007).
Protonation state and substrate binding to B2 metallo-beta-lactamase CphA from Aeromonas hydrofila.
|
| |
Proteins,
69,
595-605.
|
 |
|
|
|
|
 |
J.Morán-Barrio,
J.M.González,
M.N.Lisa,
A.L.Costello,
M.D.Peraro,
P.Carloni,
B.Bennett,
D.L.Tierney,
A.S.Limansky,
A.M.Viale,
and
A.J.Vila
(2007).
The metallo-beta-lactamase GOB is a mono-Zn(II) enzyme with a novel active site.
|
| |
J Biol Chem,
282,
18286-18293.
|
 |
|
|
|
|
 |
L.E.Horsfall,
G.Garau,
B.M.Liénard,
O.Dideberg,
C.J.Schofield,
J.M.Frère,
and
M.Galleni
(2007).
Competitive inhibitors of the CphA metallo-beta-lactamase from Aeromonas hydrophila.
|
| |
Antimicrob Agents Chemother,
51,
2136-2142.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.I.Llarrull,
M.F.Tioni,
J.Kowalski,
B.Bennett,
and
A.J.Vila
(2007).
Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake.
|
| |
J Biol Chem,
282,
30586-30595.
|
 |
|
|
|
|
 |
L.I.Llarrull,
S.M.Fabiane,
J.M.Kowalski,
B.Bennett,
B.J.Sutton,
and
A.J.Vila
(2007).
Asp-120 locates Zn2 for optimal metallo-beta-lactamase activity.
|
| |
J Biol Chem,
282,
18276-18285.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Costello,
G.Periyannan,
K.W.Yang,
M.W.Crowder,
and
D.L.Tierney
(2006).
Site-selective binding of Zn(II) to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
|
| |
J Biol Inorg Chem,
11,
351-358.
|
 |
|
|
|
|
 |
B.A.Manjasetty,
K.Büssow,
M.Fieber-Erdmann,
Y.Roske,
J.Gobom,
C.Scheich,
F.Götz,
F.H.Niesen,
and
U.Heinemann
(2006).
Crystal structure of Homo sapiens PTD012 reveals a zinc-containing hydrolase fold.
|
| |
Protein Sci,
15,
914-920.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.Xu,
D.Xie,
and
H.Guo
(2006).
Catalytic mechanism of class B2 metallo-beta-lactamase.
|
| |
J Biol Chem,
281,
8740-8747.
|
 |
|
|
|
|
 |
G.Estiu,
D.Suárez,
and
K.M.Merz
(2006).
Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases.
|
| |
J Comput Chem,
27,
1240-1262.
|
 |
|
|
|
|
 |
G.Hagelueken,
T.M.Adams,
L.Wiehlmann,
U.Widow,
H.Kolmar,
B.Tümmler,
D.W.Heinz,
and
W.D.Schubert
(2006).
The crystal structure of SdsA1, an alkylsulfatase from Pseudomonas aeruginosa, defines a third class of sulfatases.
|
| |
Proc Natl Acad Sci U S A,
103,
7631-7636.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Wang,
Y.Okamoto,
J.Morishita,
K.Tsuboi,
A.Miyatake,
and
N.Ueda
(2006).
Functional analysis of the purified anandamide-generating phospholipase D as a member of the metallo-beta-lactamase family.
|
| |
J Biol Chem,
281,
12325-12335.
|
 |
|
|
|
|
 |
K.De Vriendt,
G.Van Driessche,
B.Devreese,
C.Bebrone,
C.Anne,
J.M.Frère,
M.Galleni,
and
J.Van Beeumen
(2006).
Monitoring the zinc affinity of the metallo-beta-lactamase CphA by automated nanoESI-MS.
|
| |
J Am Soc Mass Spectrom,
17,
180-188.
|
 |
|
|
|
|
 |
N.Selevsek,
A.Tholey,
E.Heinzle,
B.M.Liénard,
N.J.Oldham,
C.J.Schofield,
U.Heinz,
H.W.Adolph,
and
J.M.Frère
(2006).
Studies on ternary metallo-beta lactamase-inhibitor complexes using electrospray ionization mass spectrometry.
|
| |
J Am Soc Mass Spectrom,
17,
1000-1004.
|
 |
|
|
|
|
 |
P.Macheboeuf,
C.Contreras-Martel,
V.Job,
O.Dideberg,
and
A.Dessen
(2006).
Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes.
|
| |
FEMS Microbiol Rev,
30,
673-691.
|
 |
|
|
|
|
 |
A.Vogel,
O.Schilling,
B.Späth,
and
A.Marchfelder
(2005).
The tRNase Z family of proteins: physiological functions, substrate specificity and structural properties.
|
| |
Biol Chem,
386,
1253-1264.
|
 |
|
|
|
|
 |
B.Bauer-Siebenlist,
S.Dechert,
and
F.Meyer
(2005).
Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems.
|
| |
Chemistry,
11,
5343-5352.
|
 |
|
|
|
|
 |
D.Liu,
B.W.Lepore,
G.A.Petsko,
P.W.Thomas,
E.M.Stone,
W.Fast,
and
D.Ringe
(2005).
Three-dimensional structure of the quorum-quenching N-acyl homoserine lactone hydrolase from Bacillus thuringiensis.
|
| |
Proc Natl Acad Sci U S A,
102,
11882-11887.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Garau,
A.M.Di Guilmi,
and
B.G.Hall
(2005).
Structure-based phylogeny of the metallo-beta-lactamases.
|
| |
Antimicrob Agents Chemother,
49,
2778-2784.
|
 |
|
|
|
|
 |
G.Garau,
D.Lemaire,
T.Vernet,
O.Dideberg,
and
A.M.Di Guilmi
(2005).
Crystal structure of phosphorylcholine esterase domain of the virulence factor choline-binding protein e from streptococcus pneumoniae: new structural features among the metallo-beta-lactamase superfamily.
|
| |
J Biol Chem,
280,
28591-28600.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.L.de la Sierra-Gallay,
O.Pellegrini,
and
C.Condon
(2005).
Structural basis for substrate binding, cleavage and allostery in the tRNA maturase RNase Z.
|
| |
Nature,
433,
657-661.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Antony,
J.P.Piquemal,
and
N.Gresh
(2005).
Complexes of thiomandelate and captopril mercaptocarboxylate inhibitors to metallo-beta-lactamase by polarizable molecular mechanics. Validation on model binding sites by quantum chemistry.
|
| |
J Comput Chem,
26,
1131-1147.
|
 |
|
|
|
|
 |
N.Gresh,
J.P.Piquemal,
and
M.Krauss
(2005).
Representation of Zn(II) complexes in polarizable molecular mechanics. Further refinements of the electrostatic and short-range contributions. Comparisons with parallel ab initio computations.
|
| |
J Comput Chem,
26,
1113-1130.
|
 |
|
|
|
|
 |
O.Schilling,
B.Späth,
B.Kostelecky,
A.Marchfelder,
W.Meyer-Klaucke,
and
A.Vogel
(2005).
Exosite modules guide substrate recognition in the ZiPD/ElaC protein family.
|
| |
J Biol Chem,
280,
17857-17862.
|
 |
|
|
|
|
 |
P.E.Tomatis,
R.M.Rasia,
L.Segovia,
and
A.J.Vila
(2005).
Mimicking natural evolution in metallo-beta-lactamases through second-shell ligand mutations.
|
| |
Proc Natl Acad Sci U S A,
102,
13761-13766.
|
 |
|
|
|
|
 |
P.Oelschlaeger,
S.L.Mayo,
and
J.Pleiss
(2005).
Impact of remote mutations on metallo-beta-lactamase substrate specificity: implications for the evolution of antibiotic resistance.
|
| |
Protein Sci,
14,
765-774.
|
 |
|
|
|
|
 |
R.Ishii,
A.Minagawa,
H.Takaku,
M.Takagi,
M.Nashimoto,
and
S.Yokoyama
(2005).
Crystal structure of the tRNA 3' processing endoribonuclease tRNase Z from Thermotoga maritima.
|
| |
J Biol Chem,
280,
14138-14144.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Minagawa,
H.Takaku,
M.Takagi,
and
M.Nashimoto
(2004).
A novel endonucleolytic mechanism to generate the CCA 3' termini of tRNA molecules in Thermotoga maritima.
|
| |
J Biol Chem,
279,
15688-15697.
|
 |
|
|
|
|
 |
G.Garau,
I.García-Sáez,
C.Bebrone,
C.Anne,
P.Mercuri,
M.Galleni,
J.M.Frère,
and
O.Dideberg
(2004).
Update of the standard numbering scheme for class B beta-lactamases.
|
| |
Antimicrob Agents Chemother,
48,
2347-2349.
|
 |
|
|
|
|
 |
L.H.Wang,
L.X.Weng,
Y.H.Dong,
and
L.H.Zhang
(2004).
Specificity and enzyme kinetics of the quorum-quenching N-Acyl homoserine lactone lactonase (AHL-lactonase).
|
| |
J Biol Chem,
279,
13645-13651.
|
 |
|
|
|
|
 |
M.Dal Peraro,
A.J.Vila,
and
P.Carloni
(2004).
Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
|
| |
Proteins,
54,
412-423.
|
 |
|
|
|
|
 |
P.S.Mercuri,
I.García-Sáez,
K.De Vriendt,
I.Thamm,
B.Devreese,
J.Van Beeumen,
O.Dideberg,
G.M.Rossolini,
J.M.Frère,
and
M.Galleni
(2004).
Probing the specificity of the subclass B3 FEZ-1 metallo-beta-lactamase by site-directed mutagenesis.
|
| |
J Biol Chem,
279,
33630-33638.
|
 |
|
|
|
|
 |
R.M.Rasia,
and
A.J.Vila
(2004).
Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase.
|
| |
J Biol Chem,
279,
26046-26051.
|
 |
|
|
|
|
 |
Y.Okamoto,
J.Morishita,
K.Tsuboi,
T.Tonai,
and
N.Ueda
(2004).
Molecular characterization of a phospholipase D generating anandamide and its congeners.
|
| |
J Biol Chem,
279,
5298-5305.
|
 |
|
|
|
|
 |
C.Damblon,
M.Jensen,
A.Ababou,
I.Barsukov,
C.Papamicael,
C.J.Schofield,
L.Olsen,
R.Bauer,
and
G.C.Roberts
(2003).
The inhibitor thiomandelic acid binds to both metal ions in metallo-beta-lactamase and induces positive cooperativity in metal binding.
|
| |
J Biol Chem,
278,
29240-29251.
|
 |
|
|
|
|
 |
C.Moali,
C.Anne,
J.Lamotte-Brasseur,
S.Groslambert,
B.Devreese,
J.Van Beeumen,
M.Galleni,
and
J.M.Frère
(2003).
Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis.
|
| |
Chem Biol,
10,
319-329.
|
 |
|
|
|
|
 |
D.Kumaran,
S.Eswaramoorthy,
S.E.Gerchman,
H.Kycia,
F.W.Studier,
and
S.Swaminathan
(2003).
Crystal structure of a putative CN hydrolase from yeast.
|
| |
Proteins,
52,
283-291.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.García-Saez,
J.Hopkins,
C.Papamicael,
N.Franceschini,
G.Amicosante,
G.M.Rossolini,
M.Galleni,
J.M.Frère,
and
O.Dideberg
(2003).
The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril.
|
| |
J Biol Chem,
278,
23868-23873.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.E.Meima,
K.E.Weening,
and
P.Schaap
(2003).
Characterization of a cAMP-stimulated cAMP phosphodiesterase in Dictyostelium discoideum.
|
| |
J Biol Chem,
278,
14356-14362.
|
 |
|
|
|
|
 |
M.Goto,
H.Yasuzawa,
T.Higashi,
Y.Yamaguchi,
A.Kawanami,
S.Mifune,
H.Mori,
H.Nakayama,
K.Harada,
and
Y.Arakawa
(2003).
Dependence of hydrolysis of beta-lactams with a zinc(II)-beta-lactamase produced from Serratia marcescens (IMP-1) on pH and concentration of zinc(II) ion: dissociation of Zn(II) from IMP-1 in acidic medium.
|
| |
Biol Pharm Bull,
26,
589-594.
|
 |
|
|
|
|
 |
S.Siemann,
A.J.Clarke,
T.Viswanatha,
and
G.I.Dmitrienko
(2003).
Thiols as classical and slow-binding inhibitors of IMP-1 and other binuclear metallo-beta-lactamases.
|
| |
Biochemistry,
42,
1673-1683.
|
 |
|
|
|
|
 |
T.A.Murphy,
A.M.Simm,
M.A.Toleman,
R.N.Jones,
and
T.R.Walsh
(2003).
Biochemical characterization of the acquired metallo-beta-lactamase SPM-1 from Pseudomonas aeruginosa.
|
| |
Antimicrob Agents Chemother,
47,
582-587.
|
 |
|
|
|
|
 |
T.A.Roth,
G.Minasov,
S.Morandi,
F.Prati,
and
B.K.Shoichet
(2003).
Thermodynamic cycle analysis and inhibitor design against beta-lactamase.
|
| |
Biochemistry,
42,
14483-14491.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.Heinz,
R.Bauer,
S.Wommer,
W.Meyer-Klaucke,
C.Papamichaels,
J.Bateson,
and
H.W.Adolph
(2003).
Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases.
|
| |
J Biol Chem,
278,
20659-20666.
|
 |
|
|
|
|
 |
A.M.Simm,
C.S.Higgins,
A.L.Carenbauer,
M.W.Crowder,
J.H.Bateson,
P.M.Bennett,
A.R.Clarke,
S.E.Halford,
and
T.R.Walsh
(2002).
Characterization of monomeric L1 metallo-beta -lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis.
|
| |
J Biol Chem,
277,
24744-24752.
|
 |
|
|
|
|
 |
A.Vogel,
O.Schilling,
M.Niecke,
J.Bettmer,
and
W.Meyer-Klaucke
(2002).
ElaC encodes a novel binuclear zinc phosphodiesterase.
|
| |
J Biol Chem,
277,
29078-29085.
|
 |
|
|
|
|
 |
C.M.Gomes,
C.Frazão,
A.V.Xavier,
J.Legall,
and
M.Teixeira
(2002).
Functional control of the binuclear metal site in the metallo-beta-lactamase-like fold by subtle amino acid replacements.
|
| |
Protein Sci,
11,
707-712.
|
 |
|
|
|
|
 |
D.Suárez,
N.Díaz,
and
K.M.Merz
(2002).
Molecular dynamics simulations of the dinuclear zinc-beta-lactamase from Bacteroides fragilis complexed with imipenem.
|
| |
J Comput Chem,
23,
1587-1600.
|
 |
|
|
|
|
 |
G.J.Da Silva,
M.Correia,
C.Vital,
G.Ribeiro,
J.C.Sousa,
R.Leitão,
L.Peixe,
and
A.Duarte
(2002).
Molecular characterization of bla(IMP-5), a new integron-borne metallo-beta-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal.
|
| |
FEMS Microbiol Lett,
215,
33-39.
|
 |
|
|
|
|
 |
J.Antony,
N.Gresh,
L.Olsen,
L.Hemmingsen,
C.J.Schofield,
and
R.Bauer
(2002).
Binding of D- and L-captopril inhibitors to metallo-beta-lactamase studied by polarizable molecular mechanics and quantum mechanics.
|
| |
J Comput Chem,
23,
1281-1296.
|
 |
|
|
|
|
 |
L.Bosgraaf,
H.Russcher,
H.Snippe,
S.Bader,
J.Wind,
and
P.J.Van Haastert
(2002).
Identification and characterization of two unusual cGMP-stimulated phoshodiesterases in dictyostelium.
|
| |
Mol Biol Cell,
13,
3878-3889.
|
 |
|
|
|
|
 |
L.Bosgraaf,
H.Russcher,
J.L.Smith,
D.Wessels,
D.R.Soll,
and
P.J.Van Haastert
(2002).
A novel cGMP signalling pathway mediating myosin phosphorylation and chemotaxis in Dictyostelium.
|
| |
EMBO J,
21,
4560-4570.
|
 |
|
|
|
|
 |
M.Dumoulin,
K.Conrath,
A.Van Meirhaeghe,
F.Meersman,
K.Heremans,
L.G.Frenken,
S.Muyldermans,
L.Wyns,
and
A.Matagne
(2002).
Single-domain antibody fragments with high conformational stability.
|
| |
Protein Sci,
11,
500-515.
|
 |
|
|
|
|
 |
M.E.Meima,
R.M.Biondi,
and
P.Schaap
(2002).
Identification of a novel type of cGMP phosphodiesterase that is defective in the chemotactic stmF mutants.
|
| |
Mol Biol Cell,
13,
3870-3877.
|
 |
|
|
|
|
 |
S.Vessillier,
J.D.Docquier,
S.Rival,
J.M.Frere,
M.Galleni,
G.Amicosante,
G.M.Rossolini,
and
N.Franceschini
(2002).
Overproduction and biochemical characterization of the Chryseobacterium meningosepticum BlaB metallo-beta-lactamase.
|
| |
Antimicrob Agents Chemother,
46,
1921-1927.
|
 |
|
|
|
|
 |
D.Moshous,
I.Callebaut,
R.de Chasseval,
B.Corneo,
M.Cavazzana-Calvo,
F.Le Deist,
I.Tezcan,
O.Sanal,
Y.Bertrand,
N.Philippe,
A.Fischer,
and
J.P.de Villartay
(2001).
Artemis, a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency.
|
| |
Cell,
105,
177-186.
|
 |
|
|
|
|
 |
F.R.Salsbury,
M.F.Crowley,
and
C.L.Brooks
(2001).
Modeling of the metallo-beta-lactamase from B. fragilis: structural and dynamic effects of inhibitor binding.
|
| |
Proteins,
44,
448-459.
|
 |
|
|
|
|
 |
G.M.Rossolini,
M.A.Condemi,
F.Pantanella,
J.D.Docquier,
G.Amicosante,
and
M.C.Thaller
(2001).
Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum.
|
| |
Antimicrob Agents Chemother,
45,
837-844.
|
 |
|
|
|
|
 |
G.W.Rudgers,
W.Huang,
and
T.Palzkill
(2001).
Binding properties of a peptide derived from beta-lactamase inhibitory protein.
|
| |
Antimicrob Agents Chemother,
45,
3279-3286.
|
 |
|
|
|
|
 |
I.C.Materon,
and
T.Palzkill
(2001).
Identification of residues critical for metallo-beta-lactamase function by codon randomization and selection.
|
| |
Protein Sci,
10,
2556-2565.
|
 |
|
|
|
|
 |
K.E.Conrath,
M.Lauwereys,
M.Galleni,
A.Matagne,
J.M.Frère,
J.Kinne,
L.Wyns,
and
S.Muyldermans
(2001).
Beta-lactamase inhibitors derived from single-domain antibody fragments elicited in the camelidae.
|
| |
Antimicrob Agents Chemother,
45,
2807-2812.
|
 |
|
|
|
|
 |
M.Galleni,
J.Lamotte-Brasseur,
G.M.Rossolini,
J.Spencer,
O.Dideberg,
and
J.M.Frère
(2001).
Standard numbering scheme for class B beta-lactamases.
|
| |
Antimicrob Agents Chemother,
45,
660-663.
|
 |
|
|
|
|
 |
M.Vilar,
M.Galleni,
T.Solmajer,
B.Turk,
J.M.Frère,
and
A.Matagne
(2001).
Kinetic study of two novel enantiomeric tricyclic beta-lactams which efficiently inactivate class C beta-lactamases.
|
| |
Antimicrob Agents Chemother,
45,
2215-2223.
|
 |
|
|
|
|
 |
P.S.Mercuri,
F.Bouillenne,
L.Boschi,
J.Lamotte-Brasseur,
G.Amicosante,
B.Devreese,
J.van Beeumen,
J.M.Frère,
G.M.Rossolini,
and
M.Galleni
(2001).
Biochemical characterization of the FEZ-1 metallo-beta-lactamase of Legionella gormanii ATCC 33297T produced in Escherichia coli.
|
| |
Antimicrob Agents Chemother,
45,
1254-1262.
|
 |
|
|
|
|
 |
T.Yano,
and
H.Kagamiyama
(2001).
Directed evolution of ampicillin-resistant activity from a functionally unrelated DNA fragment: A laboratory model of molecular evolution.
|
| |
Proc Natl Acad Sci U S A,
98,
903-907.
|
 |
|
|
|
|
 |
W.Fast,
Z.Wang,
and
S.J.Benkovic
(2001).
Familial mutations and zinc stoichiometry determine the rate-limiting step of nitrocefin hydrolysis by metallo-beta-lactamase from Bacteroides fragilis.
|
| |
Biochemistry,
40,
1640-1650.
|
 |
|
|
|
|
 |
Z.Zhang,
Y.Yu,
J.M.Musser,
and
T.Palzkill
(2001).
Amino acid sequence determinants of extended spectrum cephalosporin hydrolysis by the class C P99 beta-lactamase.
|
| |
J Biol Chem,
276,
46568-46574.
|
 |
|
|
|
|
 |
B.P.Atanasov,
D.Mustafi,
and
M.W.Makinen
(2000).
Protonation of the beta-lactam nitrogen is the trigger event in the catalytic action of class A beta-lactamases.
|
| |
Proc Natl Acad Sci U S A,
97,
3160-3165.
|
 |
|
|
|
|
 |
J.J.Huntley,
S.D.Scrofani,
M.J.Osborne,
P.E.Wright,
and
H.J.Dyson
(2000).
Dynamics of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor.
|
| |
Biochemistry,
39,
13356-13364.
|
 |
|
|
|
|
 |
L.Boschi,
P.S.Mercuri,
M.L.Riccio,
G.Amicosante,
M.Galleni,
J.M.Frère,
and
G.M.Rossolini
(2000).
The Legionella (Fluoribacter) gormanii metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases.
|
| |
Antimicrob Agents Chemother,
44,
1538-1543.
|
 |
|
|
|
|
 |
L.Chantalat,
E.Duée,
M.Galleni,
J.M.Frère,
and
O.Dideberg
(2000).
Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
|
| |
Protein Sci,
9,
1402-1406.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Maveyraud,
D.Golemi,
L.P.Kotra,
S.Tranier,
S.Vakulenko,
S.Mobashery,
and
J.P.Samama
(2000).
Insights into class D beta-lactamases are revealed by the crystal structure of the OXA10 enzyme from Pseudomonas aeruginosa.
|
| |
Structure,
8,
1289-1298.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.L.Riccio,
N.Franceschini,
L.Boschi,
B.Caravelli,
G.Cornaglia,
R.Fontana,
G.Amicosante,
and
G.M.Rossolini
(2000).
Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny.
|
| |
Antimicrob Agents Chemother,
44,
1229-1235.
|
 |
|
|
|
|
 |
N.O.Concha,
C.A.Janson,
P.Rowling,
S.Pearson,
C.A.Cheever,
B.P.Clarke,
C.Lewis,
M.Galleni,
J.M.Frère,
D.J.Payne,
J.H.Bateson,
and
S.S.Abdel-Meguid
(2000).
Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor.
|
| |
Biochemistry,
39,
4288-4298.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.Bellais,
D.Aubert,
T.Naas,
and
P.Nordmann
(2000).
Molecular and biochemical heterogeneity of class B carbapenem-hydrolyzing beta-lactamases in Chryseobacterium meningosepticum.
|
| |
Antimicrob Agents Chemother,
44,
1878-1886.
|
 |
|
|
|
|
 |
Y.H.Dong,
J.L.Xu,
X.Z.Li,
and
L.H.Zhang
(2000).
AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora.
|
| |
Proc Natl Acad Sci U S A,
97,
3526-3531.
|
 |
|
|
|
|
 |
A.D.Cameron,
M.Ridderström,
B.Olin,
and
B.Mannervik
(1999).
Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.
|
| |
Structure,
7,
1067-1078.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
K.Pawłowski,
B.Zhang,
L.Rychlewski,
and
A.Godzik
(1999).
The Helicobacter pylori genome: from sequence analysis to structural and functional predictions.
|
| |
Proteins,
36,
20-30.
|
 |
|
|
|
|
 |
L.Lauretti,
M.L.Riccio,
A.Mazzariol,
G.Cornaglia,
G.Amicosante,
R.Fontana,
and
G.M.Rossolini
(1999).
Cloning and characterization of blaVIM, a new integron-borne metallo-beta-lactamase gene from a Pseudomonas aeruginosa clinical isolate.
|
| |
Antimicrob Agents Chemother,
43,
1584-1590.
|
 |
|
|
|
|
 |
N.Laraki,
N.Franceschini,
G.M.Rossolini,
P.Santucci,
C.Meunier,
E.de Pauw,
G.Amicosante,
J.M.Frère,
and
M.Galleni
(1999).
Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli.
|
| |
Antimicrob Agents Chemother,
43,
902-906.
|
 |
|
|
|
|
 |
R.Paul-Soto,
M.Zeppezauer,
H.W.Adolph,
M.Galleni,
J.M.Frere,
A.Carfi,
O.Dideberg,
J.Wouters,
L.Hemmingsen,
and
R.Bauer
(1999).
Preference of Cd(II) and Zn(II) for the two metal sites in Bacillus cereus beta-lactamase II: A perturbed angular correlation of gamma-rays spectroscopic study.
|
| |
Biochemistry,
38,
16500-16506.
|
 |
|
|
|
|
 |
R.Paul-Soto,
R.Bauer,
J.M.Frère,
M.Galleni,
W.Meyer-Klaucke,
H.Nolting,
G.M.Rossolini,
D.de Seny,
M.Hernandez-Valladares,
M.Zeppezauer,
and
H.W.Adolph
(1999).
Mono- and binuclear Zn2+-beta-lactamase. Role of the conserved cysteine in the catalytic mechanism.
|
| |
J Biol Chem,
274,
13242-13249.
|
 |
|
|
|
|
 |
S.D.Scrofani,
J.Chung,
J.J.Huntley,
S.J.Benkovic,
P.E.Wright,
and
H.J.Dyson
(1999).
NMR characterization of the metallo-beta-lactamase from Bacteroides fragilis and its interaction with a tight-binding inhibitor: role of an active-site loop.
|
| |
Biochemistry,
38,
14507-14514.
|
 |
|
|
|
|
 |
S.McManus-Munoz,
and
M.W.Crowder
(1999).
Kinetic mechanism of metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
|
| |
Biochemistry,
38,
1547-1553.
|
 |
|
|
|
|
 |
Z.Li,
B.A.Rasmussen,
and
O.Herzberg
(1999).
Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
|
| |
Protein Sci,
8,
249-252.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Z.Wang,
W.Fast,
A.M.Valentine,
and
S.J.Benkovic
(1999).
Metallo-beta-lactamase: structure and mechanism.
|
| |
Curr Opin Chem Biol,
3,
614-622.
|
 |
|
|
|
|
 |
A.Carfi,
E.Duée,
M.Galleni,
J.M.Frère,
and
O.Dideberg
(1998).
1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
313-323.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Carfi,
E.Duée,
R.Paul-Soto,
M.Galleni,
J.M.Frère,
and
O.Dideberg
(1998).
X-ray structure of the ZnII beta-lactamase from Bacteroides fragilis in an orthorhombic crystal form.
|
| |
Acta Crystallogr D Biol Crystallogr,
54,
45-57.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.G.Orellano,
J.E.Girardini,
J.A.Cricco,
E.A.Ceccarelli,
and
A.J.Vila
(1998).
Spectroscopic characterization of a binuclear metal site in Bacillus cereus beta-lactamase II.
|
| |
Biochemistry,
37,
10173-10180.
|
 |
|
|
|
|
 |
F.Sanschagrin,
J.Dufresne,
and
R.C.Levesque
(1998).
Molecular heterogeneity of the L-1 metallo-beta-lactamase family from Stenotrophomonas maltophilia.
|
| |
Antimicrob Agents Chemother,
42,
1245-1248.
|
 |
|
|
|
|
 |
I.Massova,
and
S.Mobashery
(1998).
Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases.
|
| |
Antimicrob Agents Chemother,
42,
1.
|
 |
|
|
|
|
 |
J.H.Toney,
P.M.Fitzgerald,
N.Grover-Sharma,
S.H.Olson,
W.J.May,
J.G.Sundelof,
D.E.Vanderwall,
K.A.Cleary,
S.K.Grant,
J.K.Wu,
J.W.Kozarich,
D.L.Pompliano,
and
G.G.Hammond
(1998).
Antibiotic sensitization using biphenyl tetrazoles as potent inhibitors of Bacteroides fragilis metallo-beta-lactamase.
|
| |
Chem Biol,
5,
185-196.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.W.Crowder,
T.R.Walsh,
L.Banovic,
M.Pettit,
and
J.Spencer
(1998).
Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia.
|
| |
Antimicrob Agents Chemother,
42,
921-926.
|
 |
|
|
|
|
 |
P.M.Fitzgerald,
J.K.Wu,
and
J.H.Toney
(1998).
Unanticipated inhibition of the metallo-beta-lactamase from Bacteroides fragilis by 4-morpholineethanesulfonic acid (MES): a crystallographic study at 1.85-A resolution.
|
| |
Biochemistry,
37,
6791-6800.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.Swarén,
L.Maveyraud,
X.Raquet,
S.Cabantous,
C.Duez,
J.D.Pédelacq,
S.Mariotte-Boyer,
L.Mourey,
R.Labia,
M.H.Nicolas-Chanoine,
P.Nordmann,
J.M.Frère,
and
J.P.Samama
(1998).
X-ray analysis of the NMC-A beta-lactamase at 1.64-A resolution, a class A carbapenemase with broad substrate specificity.
|
| |
J Biol Chem,
273,
26714-26721.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.D.Scrofani,
P.E.Wright,
and
H.J.Dyson
(1998).
The identification of metal-binding ligand residues in metalloproteins using nuclear magnetic resonance spectroscopy.
|
| |
Protein Sci,
7,
2476-2479.
|
 |
|
|
|
|
 |
S.M.Fabiane,
M.K.Sohi,
T.Wan,
D.J.Payne,
J.H.Bateson,
T.Mitchell,
and
B.J.Sutton
(1998).
Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
|
| |
Biochemistry,
37,
12404-12411.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Melino,
C.Capo,
B.Dragani,
A.Aceto,
and
R.Petruzzelli
(1998).
A zinc-binding motif conserved in glyoxalase II, beta-lactamase and arylsulfatases.
|
| |
Trends Biochem Sci,
23,
381-382.
|
 |
|
|
|
|
 |
Z.Wang,
and
S.J.Benkovic
(1998).
Purification, characterization, and kinetic studies of a soluble Bacteroides fragilis metallo-beta-lactamase that provides multiple antibiotic resistance.
|
| |
J Biol Chem,
273,
22402-22408.
|
 |
|
|
|
|
 |
A.F.Neuwald,
J.S.Liu,
D.J.Lipman,
and
C.E.Lawrence
(1997).
Extracting protein alignment models from the sequence database.
|
| |
Nucleic Acids Res,
25,
1665-1677.
|
 |
|
|
|
|
 |
A.Felici,
M.Perilli,
N.Franceschini,
G.M.Rossolini,
M.Galleni,
J.M.Frere,
A.Oratore,
and
G.Amicosante
(1997).
Sensitivity of Aeromonas hydrophila carbapenemase to delta3-cephems: comparative study with other metallo-beta-lactamases.
|
| |
Antimicrob Agents Chemother,
41,
866-868.
|
 |
|
|
|
|
 |
B.A.Rasmussen,
and
K.Bush
(1997).
Carbapenem-hydrolyzing beta-lactamases.
|
| |
Antimicrob Agents Chemother,
41,
223-232.
|
 |
|
|
|
|
 |
C.Cantu,
W.Huang,
and
T.Palzkill
(1997).
Cephalosporin substrate specificity determinants of TEM-1 beta-lactamase.
|
| |
J Biol Chem,
272,
29144-29150.
|
 |
|
|
|
|
 |
D.J.Payne,
J.H.Bateson,
B.C.Gasson,
D.Proctor,
T.Khushi,
T.H.Farmer,
D.A.Tolson,
D.Bell,
P.W.Skett,
A.C.Marshall,
R.Reid,
L.Ghosez,
Y.Combret,
and
J.Marchand-Brynaert
(1997).
Inhibition of metallo-beta-lactamases by a series of mercaptoacetic acid thiol ester derivatives.
|
| |
Antimicrob Agents Chemother,
41,
135-140.
|
 |
|
|
|
|
 |
D.J.Payne,
J.H.Bateson,
B.C.Gasson,
T.Khushi,
D.Proctor,
S.C.Pearson,
and
R.Reid
(1997).
Inhibition of metallo-beta-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid.
|
| |
FEMS Microbiol Lett,
157,
171-175.
|
 |
|
|
|
|
 |
M.Hernandez Valladares,
A.Felici,
G.Weber,
H.W.Adolph,
M.Zeppezauer,
G.M.Rossolini,
G.Amicosante,
J.M.Frère,
and
M.Galleni
(1997).
Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability.
|
| |
Biochemistry,
36,
11534-11541.
|
 |
|
|
|
|
 |
N.O.Concha,
B.A.Rasmussen,
K.Bush,
and
O.Herzberg
(1997).
Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis.
|
| |
Protein Sci,
6,
2671-2676.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.W.Crowder,
Z.Wang,
S.L.Franklin,
E.P.Zovinka,
and
S.J.Benkovic
(1996).
Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis.
|
| |
Biochemistry,
35,
12126-12132.
|
 |
|
|
|
|
 |
Y.Yang,
and
K.Bush
(1996).
Biochemical characterization of the carbapenem-hydrolyzing beta-lactamase AsbM1 from Aeromonas sobria AER 14M: a member of a novel subgroup of metallo-beta-lactamases.
|
| |
FEMS Microbiol Lett,
137,
193-200.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |