Technical help sheet

Technical requirements for data analysis

The practicals in this course were run on virtual machines with Linux Ubuntu 22.04 Operating Systems, 32 GB of RAM, 14 vCPUs, and 400GB of storage capacity.

You will require following tools for executing the practicals in this course:

Alignment and SNV analysis

Tools

Datasets

SNV and CNV analysis practicals

  • Installation:
apt-get update && apt-get install -y autoconf build-essential cmake g++ git libcurl4-gnutls-dev libbz2-dev libdeflate-dev libgl1-mesa-dev libncurses-dev liblzma-dev pkg-config zlib1g-dev && git clone --recursive https://github.com/tobiasrausch/vc && cd vc && make all
  • After installation:
https://github.com/tobiasrausch/vc

Mutational signatures and clonal population structure analysis in cancer genomes

Tools

  • SeqPurge
  • bwa
  • bwamem
  • samtools
  • gatk
  • igv
  • ANNOVAR
  • VEP
  • Strelka2
  • MuTect2
  • fastqc

R Libraries

  • library(data.table)
  • library(ggplot2)
  • library(mobster)
  • library(GenomicRanges)
  • library(dmr.util)
  • library(ccube)
  • library(data.table)
  • library(BSgenome)
  • library(ref_genome, character.only = TRUE)
  • library(GenomicRanges)
  • library(MutationalPatterns)
  • library(plyr)
  • library(NMF)
  • library(mobster)

CRISPR-Cas9 screen practicals

Short-read and long-read RNA-seq practicals

Software Link to the software web page / source Notes

Deconvolution of the clonality of a tumour using single-cell transcriptomic data

Tools

Datasets