spacer
spacer

PDBsum entry 6pc5

Go to PDB code: 
protein dna_rna ligands Protein-protein interface(s) links
Ribosome PDB id
6pc5

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
271 a.a.
144 a.a.
201 a.a.
206 a.a.
142 a.a.
DNA/RNA
Ligands
MHW-THR-DBB-PRO-
MEA-MHV-004
O7V
PDB id:
6pc5
Name: Ribosome
Title: E. Coli 50s ribosome bound to compounds 46 and vs1
Structure: 23s ribosomal RNA. Chain: i. 5s ribosomal RNA. Chain: j. 50s ribosomal protein l2. Chain: k. Synonym: large ribosomal subunit protein ul2. 50s ribosomal protein l15. Chain: l.
Source: Escherichia coli. Organism_taxid: 562. Streptomyces virginiae. Organism_taxid: 1961
Authors: J.Pellegrino,D.J.Lee,J.S.Fraser,I.B.Seiple
Key ref: Q.Li et al. (2020). Synthetic group A streptogramin antibiotics that overcome Vat resistance. Nature, 586, 145-150. PubMed id: 32968273 DOI: 10.1038/s41586-020-2761-3
Date:
16-Jun-19     Release date:   17-Jun-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P60422  (RL2_ECOLI) -  Large ribosomal subunit protein uL2 from Escherichia coli (strain K12)
Seq:
Struc:
273 a.a.
271 a.a.
Protein chain
Pfam   ArchSchema ?
A0A037Y8L6  () -  Large ribosomal subunit protein uL15 from Escherichia coli
Seq:
Struc:
144 a.a.
144 a.a.
Protein chain
D7Z9F6  (D7Z9F6_ECOLX) - 
Protein chain
Pfam   ArchSchema ?
P60438  (RL3_ECOLI) -  Large ribosomal subunit protein uL3 from Escherichia coli (strain K12)
Seq:
Struc:
209 a.a.
206 a.a.
Protein chain
D7ZET0  (D7ZET0_ECOLX) - 
Key:    PfamA domain  Secondary structure

DNA/RNA chains
  G-G-U-U-A-A-G-C-G-A-C-U-A-A-G-C-G-U-A-C-A-C-G-G-U-G-G-A-U-G-C-C-C-U-G-G-C-A-G- ... 2897 bases
  G-C-C-U-G-G-C-G-G-C-C-G-U-A-G-C-G-C-G-G-U-G-G-U-C-C-C-A-C-C-U-G-A-C-C-C-C-A-U- 118 bases

 

 
DOI no: 10.1038/s41586-020-2761-3 Nature 586:145-150 (2020)
PubMed id: 32968273  
 
 
Synthetic group A streptogramin antibiotics that overcome Vat resistance.
Q.Li, J.Pellegrino, D.J.Lee, A.A.Tran, H.A.Chaires, R.Wang, J.E.Park, K.Ji, D.Chow, N.Zhang, A.F.Brilot, J.T.Biel, G.van Zundert, K.Borrelli, D.Shinabarger, C.Wolfe, B.Murray, M.P.Jacobson, E.Mühle, O.Chesneau, J.S.Fraser, I.B.Seiple.
 
  ABSTRACT  
 
Natural products serve as chemical blueprints for most antibiotics in clinical use. The evolutionary process by which these molecules arise is inherently accompanied by the co-evolution of resistance mechanisms that shorten the clinical lifetime of any given class of antibiotics1. Virginiamycin acetyltransferase (Vat) enzymes are resistance proteins that provide protection against streptogramins2, potent antibiotics against Gram-positive bacteria that inhibit the bacterial ribosome3. Owing to the challenge of selectively modifying the chemically complex, 23-membered macrocyclic scaffold of group A streptogramins, analogues that overcome the resistance conferred by Vat enzymes have not been previously developed2. Here we report the design, synthesis, and antibacterial evaluation of group A streptogramin antibiotics with extensive structural variability. Using cryo-electron microscopy and forcefield-based refinement, we characterize the binding of eight analogues to the bacterial ribosome at high resolution, revealing binding interactions that extend into the peptidyl tRNA-binding site and towards synergistic binders that occupy the nascent peptide exit tunnel. One of these analogues has excellent activity against several streptogramin-resistant strains of Staphylococcus aureus, exhibits decreased rates of acetylation in vitro, and is effective at lowering bacterial load in a mouse model of infection. Our results demonstrate that the combination of rational design and modular chemical synthesis can revitalize classes of antibiotics that are limited by naturally arising resistance mechanisms.
 

 

spacer

spacer