spacer
spacer

PDBsum entry 5o1f

Go to PDB code: 
Top Page protein ligands metals Protein-protein interface(s) links
DNA binding protein PDB id
5o1f
Contents
Protein chains
196 a.a.
Ligands
9GQ ×2
Metals
_ZN ×2
Waters ×402

References listed in PDB file
Key reference
Title Aminobenzothiazole derivatives stabilize the thermolabile p53 cancer mutant y220c and show anticancer activity in p53-Y220c cell lines.
Authors M.G.J.Baud, M.R.Bauer, L.Verduci, F.A.Dingler, K.J.Patel, D.Horil roy, A.C.Joerger, A.R.Fersht.
Ref. Eur J Med Chem, 2018, 152, 101-114. [DOI no: 10.1016/j.ejmech.2018.04.035]
PubMed id 29702446
Abstract
Many cancers have the tumor suppressor p53 inactivated by mutation, making reactivation of mutant p53 with small molecules a promising strategy for the development of novel anticancer therapeutics. The oncogenic p53 mutation Y220C, which accounts for approximately 100,000 cancer cases per year, creates an extended surface crevice in the DNA-binding domain, which destabilizes p53 and causes denaturation and aggregation. Here, we describe the structure-guided design of a novel class of small-molecule Y220C stabilizers and the challenging synthetic routes developed in the process. The synthesized chemical probe MB710, an aminobenzothiazole derivative, binds tightly to the Y220C pocket and stabilizes p53-Y220C in vitro. MB725, an ethylamide analogue of MB710, induced selective viability reduction in several p53-Y220C cancer cell lines while being well tolerated in control cell lines. Reduction of viability correlated with increased and selective transcription of p53 target genes such as BTG2, p21, PUMA, FAS, TNF, and TNFRSF10B, which promote apoptosis and cell cycle arrest, suggesting compound-mediated transcriptional activation of the Y220C mutant. Our data provide a framework for the development of a class of potent, non-toxic compounds for reactivating the Y220C mutant in anticancer therapy.
PROCHECK
Go to PROCHECK summary
 Headers

 

spacer

spacer