spacer
spacer

PDBsum entry 5evd

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
5evd

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
267 a.a.
Ligands
VC2
SO4 ×2
Metals
_ZN ×2
Waters ×271
PDB id:
5evd
Name: Hydrolase
Title: Crystal structure of the metallo-beta-lactamase l1 in complex with the bisthiazolidine inhibitor d-vc26
Structure: Metallo-beta-lactamase l1. Chain: a. Synonym: beta-lactamase type ii,penicillinase. Engineered: yes
Source: Stenotrophomonas maltophilia. Pseudomonas maltophilia. Organism_taxid: 40324. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Expression_system_variant: solu.
Resolution:
1.80Å     R-factor:   0.167     R-free:   0.196
Authors: P.Hinchliffe,J.Spencer
Key ref: P.Hinchliffe et al. (2016). Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes. Proc Natl Acad Sci U S A, 113, E3745. PubMed id: 27303030 DOI: 10.1073/pnas.1601368113
Date:
19-Nov-15     Release date:   01-Jun-16    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P52700  (BLA1_STEMA) -  Metallo-beta-lactamase L1 type 3 from Stenotrophomonas maltophilia
Seq:
Struc:
290 a.a.
267 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.5.2.6  - beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin Biosynthesis and Metabolism
      Reaction: a beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zn(2+)

 

 
DOI no: 10.1073/pnas.1601368113 Proc Natl Acad Sci U S A 113:E3745 (2016)
PubMed id: 27303030  
 
 
Cross-class metallo-β-lactamase inhibition by bisthiazolidines reveals multiple binding modes.
P.Hinchliffe, M.M.González, M.F.Mojica, J.M.González, V.Castillo, C.Saiz, M.Kosmopoulou, C.L.Tooke, L.I.Llarrull, G.Mahler, R.A.Bonomo, A.J.Vila, J.Spencer.
 
  ABSTRACT  
 
Metallo-β-lactamases (MBLs) hydrolyze almost all β-lactam antibiotics and are unaffected by clinically available β-lactamase inhibitors (βLIs). Active-site architecture divides MBLs into three classes (B1, B2, and B3), complicating development of βLIs effective against all enzymes. Bisthiazolidines (BTZs) are carboxylate-containing, bicyclic compounds, considered as penicillin analogs with an additional free thiol. Here, we show both l- and d-BTZ enantiomers are micromolar competitive βLIs of all MBL classes in vitro, with Kis of 6-15 µM or 36-84 µM for subclass B1 MBLs (IMP-1 and BcII, respectively), and 10-12 µM for the B3 enzyme L1. Against the B2 MBL Sfh-I, the l-BTZ enantiomers exhibit 100-fold lower Kis (0.26-0.36 µM) than d-BTZs (26-29 µM). Importantly, cell-based time-kill assays show BTZs restore β-lactam susceptibility of Escherichia coli-producing MBLs (IMP-1, Sfh-1, BcII, and GOB-18) and, significantly, an extensively drug-resistant Stenotrophomonas maltophilia clinical isolate expressing L1. BTZs therefore inhibit the full range of MBLs and potentiate β-lactam activity against producer pathogens. X-ray crystal structures reveal insights into diverse BTZ binding modes, varying with orientation of the carboxylate and thiol moieties. BTZs bind the di-zinc centers of B1 (IMP-1; BcII) and B3 (L1) MBLs via the free thiol, but orient differently depending upon stereochemistry. In contrast, the l-BTZ carboxylate dominates interactions with the monozinc B2 MBL Sfh-I, with the thiol uninvolved. d-BTZ complexes most closely resemble β-lactam binding to B1 MBLs, but feature an unprecedented disruption of the D120-zinc interaction. Cross-class MBL inhibition therefore arises from the unexpected versatility of BTZ binding.
 

 

spacer

spacer