 |
PDBsum entry 4zwj
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Signaling protein
|
PDB id
|
|
|
|
4zwj
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
833 a.a.
|
 |
|
|
|
|
|
|
|
673 a.a.
|
 |
|
|
|
|
|
|
|
789 a.a.
|
 |
|
|
|
|
|
|
|
References listed in PDB file
|
 |
|
Key reference
|
 |
|
Title
|
 |
Crystal structure of rhodopsin bound to arrestin by femtosecond X-Ray laser.
|
 |
|
Authors
|
 |
Y.Kang,
X.E.Zhou,
X.Gao,
Y.He,
W.Liu,
A.Ishchenko,
A.Barty,
T.A.White,
O.Yefanov,
G.W.Han,
Q.Xu,
P.W.De waal,
J.Ke,
M.H.Tan,
C.Zhang,
A.Moeller,
G.M.West,
B.D.Pascal,
N.Van eps,
L.N.Caro,
S.A.Vishnivetskiy,
R.J.Lee,
K.M.Suino-Powell,
X.Gu,
K.Pal,
J.Ma,
X.Zhi,
S.Boutet,
G.J.Williams,
M.Messerschmidt,
C.Gati,
N.A.Zatsepin,
D.Wang,
D.James,
S.Basu,
S.Roy-Chowdhury,
C.E.Conrad,
J.Coe,
H.Liu,
S.Lisova,
C.Kupitz,
I.Grotjohann,
R.Fromme,
Y.Jiang,
M.Tan,
H.Yang,
J.Li,
M.Wang,
Z.Zheng,
D.Li,
N.Howe,
Y.Zhao,
J.Standfuss,
K.Diederichs,
Y.Dong,
C.S.Potter,
B.Carragher,
M.Caffrey,
H.Jiang,
H.N.Chapman,
J.C.Spence,
P.Fromme,
U.Weierstall,
O.P.Ernst,
V.Katritch,
V.V.Gurevich,
P.R.Griffin,
W.L.Hubbell,
R.C.Stevens,
V.Cherezov,
K.Melcher,
H.E.Xu.
|
 |
|
Ref.
|
 |
Nature, 2015,
523,
561-567.
[DOI no: ]
|
 |
|
PubMed id
|
 |
|
 |
|
|
 |
 |
|
Abstract
|
 |
|
G-protein-coupled receptors (GPCRs) signal primarily through G proteins or
arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects
signalling to numerous G-protein-independent pathways. Here we report the
crystal structure of a constitutively active form of human rhodopsin bound to a
pre-activated form of the mouse visual arrestin, determined by serial
femtosecond X-ray laser crystallography. Together with extensive biochemical and
mutagenesis data, the structure reveals an overall architecture of the
rhodopsin-arrestin assembly in which rhodopsin uses distinct structural
elements, including transmembrane helix 7 and helix 8, to recruit arrestin.
Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20°
rotation between the amino and carboxy domains, which opens up a cleft in
arrestin to accommodate a short helix formed by the second intracellular loop of
rhodopsin. This structure provides a basis for understanding GPCR-mediated
arrestin-biased signalling and demonstrates the power of X-ray lasers for
advancing the frontiers of structural biology.
|
 |
|
|
|
|
 |