spacer
spacer

PDBsum entry 2erh

Go to PDB code: 
protein Protein-protein interface(s) links
Hydrolase/hydrolase inhibitor PDB id
2erh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
87 a.a. *
127 a.a. *
Waters ×149
* Residue conservation analysis
PDB id:
2erh
Name: Hydrolase/hydrolase inhibitor
Title: Crystal structure of the e7_g/im7_g complex; a designed interface between the colicin e7 dnase and the im7 immunity protein
Structure: Colicin e7 immunity protein. Chain: a. Synonym: imme7, microcin e7 immunity protein. Engineered: yes. Mutation: yes. Colicin e7. Chain: b. Engineered: yes. Mutation: yes
Source: Escherichia coli. Organism_taxid: 562. Gene: imm, ceie7. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: cole7, cea.
Biol. unit: Octamer (from PQS)
Resolution:
2.00Å     R-factor:   0.228     R-free:   0.271
Authors: L.A.Joachimiak,T.Kortemme,B.L.Stoddard,D.Baker
Key ref:
L.A.Joachimiak et al. (2006). Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface. J Mol Biol, 361, 195-208. PubMed id: 16831445 DOI: 10.1016/j.jmb.2006.05.022
Date:
24-Oct-05     Release date:   25-Jul-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q03708  (IMM7_ECOLX) -  Colicin-E7 immunity protein from Escherichia coli
Seq:
Struc:
87 a.a.
87 a.a.*
Protein chain
Pfam   ArchSchema ?
Q47112  (CEA7_ECOLX) -  Colicin-E7 from Escherichia coli
Seq:
Struc:
 
Seq:
Struc:
576 a.a.
127 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 7 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain B: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.jmb.2006.05.022 J Mol Biol 361:195-208 (2006)
PubMed id: 16831445  
 
 
Computational design of a new hydrogen bond network and at least a 300-fold specificity switch at a protein-protein interface.
L.A.Joachimiak, T.Kortemme, B.L.Stoddard, D.Baker.
 
  ABSTRACT  
 
The redesign of protein-protein interactions is a stringent test of our understanding of molecular recognition and specificity. Previously we engineered a modest specificity switch into the colicin E7 DNase-Im7 immunity protein complex by identifying mutations that are disruptive in the native complex, but can be compensated by mutations on the interacting partner. Here we extend the approach by systematically sampling alternate rigid body orientations to optimize the interactions in a binding mode specific manner. Using this protocol we designed a de novo hydrogen bond network at the DNase-immunity protein interface and confirmed the design with X-ray crystallographic analysis. Subsequent design of the second shell of interactions guided by insights from the crystal structure on tightly bound water molecules, conformational strain, and packing defects yielded new binding partners that exhibited specificities of at least 300-fold between the cognate and the non-cognate complexes. This multi-step approach should be applicable to the design of polar protein-protein interactions and contribute to the re-engineering of regulatory networks mediated by protein-protein interactions.
 
  Selected figure(s)  
 
Figure 4.
Figure 4. The N517Q mutation in the G design induces a backbone shift in the DNase. Overlay of the design model (teal and yellow side-chains) with the experimentally determined structure (magenta and orange side-chains). The Q517 side-chain in the G design crystal structure does not displace a tightly bound water molecule (magenta, W12) resulting in a backbone shift to accommodate a different Q side-chain rotamer. The immunity protein backbones are colored in gray.
Figure 5.
Figure 5. Structure-based optimization of the G design. The DNase is colored in teal and the immunity protein in gray. Residues participating in the interaction that have been changed or were allowed to vary are shown in space-fill representation, in green and yellow, respectively. (a) In the G design crystal structure the T516 hydroxyl group makes a hydrogen bond to the backbone carbonyl of I54, but the methyl group of the threonine is sub-optimally packed. (b) In the wild-type interface N516 forms a water-mediated (magenta) hydrogen bond to the backbone carbonyl of I54. Following sequence optimization surrounding T516 using the G design structure, the two sequences with the lowest predicted binding energies contained the L19V/I68F(c) and I68W mutations (d) (named G_68F and G_68W, respectively).
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2006, 361, 195-208) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21349882 A.Morin, K.W.Kaufmann, C.Fortenberry, J.M.Harp, L.S.Mizoue, and J.Meiler (2011).
Computational design of an endo-1,4-{beta}-xylanase ligand binding site.
  Protein Eng Des Sel, 24, 503-516.
PDB codes: 3mf6 3mf9 3mfa 3mfc
21128762 I.Samish, C.M.MacDermaid, J.M.Perez-Aguilar, and J.G.Saven (2011).
Theoretical and computational protein design.
  Annu Rev Phys Chem, 62, 129-149.  
21685921 M.Kosloff, A.M.Travis, D.E.Bosch, D.P.Siderovski, and V.Y.Arshavsky (2011).
Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions.
  Nat Struct Mol Biol, 18, 846-853.  
20623647 O.Sharabi, C.Yanover, A.Dekel, and J.M.Shifman (2011).
Optimizing energy functions for protein-protein interface design.
  J Comput Chem, 32, 23-32.  
20724439 D.Farrell, F.O'Meara, M.Johnston, J.Bradley, C.R.Søndergaard, N.Georgi, H.Webb, B.M.Tynan-Connolly, U.Bjarnadottir, T.Carstensen, and J.E.Nielsen (2010).
Capturing, sharing and analysing biophysical data from protein engineering and protein characterization studies.
  Nucleic Acids Res, 38, e186.  
19899154 D.W.Sammond, Z.M.Eletr, C.Purbeck, and B.Kuhlman (2010).
Computational design of second-site suppressor mutations at protein-protein interfaces.
  Proteins, 78, 1055-1065.  
20080561 E.N.Salgado, X.I.Ambroggio, J.D.Brodin, R.A.Lewis, B.Kuhlman, and F.A.Tezcan (2010).
Metal templated design of protein interfaces.
  Proc Natl Acad Sci U S A, 107, 1827-1832.
PDB codes: 3hni 3hnj 3hnk 3hnl
20462859 F.Lauck, C.A.Smith, G.F.Friedland, E.L.Humphris, and T.Kortemme (2010).
RosettaBackrub--a web server for flexible backbone protein structure modeling and design.
  Nucleic Acids Res, 38, W569-W575.  
20670934 J.J.Havranek (2010).
Specificity in computational protein design.
  J Biol Chem, 285, 31095-31099.  
20235548 K.W.Kaufmann, G.H.Lemmon, S.L.Deluca, J.H.Sheehan, and J.Meiler (2010).
Practically useful: what the Rosetta protein modeling suite can do for you.
  Biochemistry, 49, 2987-2998.  
20479265 N.A.Meenan, A.Sharma, S.J.Fleishman, C.J.Macdonald, B.Morel, R.Boetzel, G.R.Moore, D.Baker, and C.Kleanthous (2010).
The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction.
  Proc Natl Acad Sci U S A, 107, 10080-10085.
PDB code: 2wpt
20133828 Y.Lu (2010).
Metal ions as matchmakers for proteins.
  Proc Natl Acad Sci U S A, 107, 1811-1812.  
19477127 C.J.Farady, B.D.Sellers, M.P.Jacobson, and C.S.Craik (2009).
Improving the species cross-reactivity of an antibody using computational design.
  Bioorg Med Chem Lett, 19, 3744-3747.  
19841629 D.J.Mandell, and T.Kortemme (2009).
Computer-aided design of functional protein interactions.
  Nat Chem Biol, 5, 797-807.  
19269963 H.Watanabe, H.Matsumaru, A.Ooishi, Y.Feng, T.Odahara, K.Suto, and S.Honda (2009).
Optimizing pH Response of Affinity between Protein G and IgG Fc: HOW ELECTROSTATIC MODULATIONS AFFECT PROTEIN-PROTEIN INTERACTIONS.
  J Biol Chem, 284, 12373-12383.
PDB codes: 2zw0 2zw1
19646858 J.Karanicolas, and B.Kuhlman (2009).
Computational design of affinity and specificity at protein-protein interfaces.
  Curr Opin Struct Biol, 19, 458-463.  
18767161 J.N.Haidar, B.Pierce, Y.Yu, W.Tong, M.Li, and Z.Weng (2009).
Structure-based design of a T-cell receptor leads to nearly 100-fold improvement in binding affinity for pepMHC.
  Proteins, 74, 948-960.  
19422060 M.Schneider, X.Fu, and A.E.Keating (2009).
X-ray vs. NMR structures as templates for computational protein design.
  Proteins, 77, 97.  
19324680 M.Suárez, and A.Jaramillo (2009).
Challenges in the computational design of proteins.
  J R Soc Interface, 6, S477-S491.  
19643977 O.Sharabi, Y.Peleg, E.Mashiach, E.Vardy, Y.Ashani, I.Silman, J.L.Sussman, and J.M.Shifman (2009).
Design, expression and characterization of mutants of fasciculin optimized for interaction with its target, acetylcholinesterase.
  Protein Eng Des Sel, 22, 641-648.  
19461664 P.E.Purnick, and R.Weiss (2009).
The second wave of synthetic biology: from modules to systems.
  Nat Rev Mol Cell Biol, 10, 410-422.  
18700034 D.R.Livesay, D.H.Huynh, S.Dallakyan, and D.J.Jacobs (2008).
Hydrogen bond networks determine emergent mechanical and thermodynamic properties across a protein family.
  Chem Cent J, 2, 17.  
17729291 M.D.Altman, E.A.Nalivaika, M.Prabu-Jeyabalan, C.A.Schiffer, and B.Tidor (2008).
Computational design and experimental study of tighter binding peptides to an inactivated mutant of HIV-1 protease.
  Proteins, 70, 678-694.
PDB codes: 2nxd 2nxl 2nxm
18689687 P.Verdino, C.Aldag, D.Hilvert, and I.A.Wilson (2008).
Closely related antibody receptors exploit fundamentally different strategies for steroid recognition.
  Proc Natl Acad Sci U S A, 105, 11725-11730.
PDB codes: 2o5x 2o5y 2o5z
17925020 A.Shulman-Peleg, M.Shatsky, R.Nussinov, and H.J.Wolfson (2007).
Spatial chemical conservation of hot spot interactions in protein-protein complexes.
  BMC Biol, 5, 43.  
17239579 D.Reichmann, O.Rahat, M.Cohen, H.Neuvirth, and G.Schreiber (2007).
The molecular architecture of protein-protein binding sites.
  Curr Opin Struct Biol, 17, 67-76.  
17603074 D.W.Sammond, Z.M.Eletr, C.Purbeck, R.J.Kimple, D.P.Siderovski, and B.Kuhlman (2007).
Structure-based protocol for identifying mutations that enhance protein-protein binding affinities.
  J Mol Biol, 371, 1392-1404.
PDB code: 2om2
17603475 J.C.Miller, M.C.Holmes, J.Wang, D.Y.Guschin, Y.L.Lee, I.Rupniewski, C.M.Beausejour, A.J.Waite, N.S.Wang, K.A.Kim, P.D.Gregory, C.O.Pabo, and E.J.Rebar (2007).
An improved zinc-finger nuclease architecture for highly specific genome editing.
  Nat Biotechnol, 25, 778-785.  
17574836 P.Beltrao, C.Kiel, and L.Serrano (2007).
Structures in systems biology.
  Curr Opin Struct Biol, 17, 378-384.  
18074396 R.L.Rich, and D.G.Myszka (2007).
Survey of the year 2006 commercial optical biosensor literature.
  J Mol Recognit, 20, 300-366.  
17524729 S.G.Kang, and J.G.Saven (2007).
Computational protein design: structure, function and combinatorial diversity.
  Curr Opin Chem Biol, 11, 329-334.  
17644370 S.M.Lippow, and B.Tidor (2007).
Progress in computational protein design.
  Curr Opin Biotechnol, 18, 305-311.  
17891135 S.M.Lippow, K.D.Wittrup, and B.Tidor (2007).
Computational design of antibody-affinity improvement beyond in vivo maturation.
  Nat Biotechnol, 25, 1171-1176.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer