spacer
spacer

PDBsum entry 2dn3

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxygen storage/transport PDB id
2dn3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
141 a.a. *
146 a.a. *
Ligands
HEM-CMO ×2
Waters ×212
* Residue conservation analysis
PDB id:
2dn3
Name: Oxygen storage/transport
Title: 1.25a resolution crystal structure of human hemoglobin in the carbonmonoxy form
Structure: Hemoglobin alpha subunit. Chain: a. Synonym: hemoglobin alpha chain, alpha-globin. Hemoglobin beta subunit. Chain: b. Synonym: hemoglobin beta chain, beta-globin
Source: Homo sapiens. Human. Organism_taxid: 9606. Tissue: red cell. Tissue: red cell
Biol. unit: Tetramer (from PDB file)
Resolution:
1.25Å     R-factor:   0.183    
Authors: S.-Y.Park,T.Yokoyama,N.Shibayama,Y.Shiro,J.R.Tame
Key ref:
S.Y.Park et al. (2006). 1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms. J Mol Biol, 360, 690-701. PubMed id: 16765986 DOI: 10.1016/j.jmb.2006.05.036
Date:
25-Apr-06     Release date:   09-May-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P69905  (HBA_HUMAN) -  Hemoglobin subunit alpha from Homo sapiens
Seq:
Struc:
142 a.a.
141 a.a.
Protein chain
Pfam   ArchSchema ?
P68871  (HBB_HUMAN) -  Hemoglobin subunit beta from Homo sapiens
Seq:
Struc:
147 a.a.
146 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: Chains A, B: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1016/j.jmb.2006.05.036 J Mol Biol 360:690-701 (2006)
PubMed id: 16765986  
 
 
1.25 A resolution crystal structures of human haemoglobin in the oxy, deoxy and carbonmonoxy forms.
S.Y.Park, T.Yokoyama, N.Shibayama, Y.Shiro, J.R.Tame.
 
  ABSTRACT  
 
The most recent refinement of the crystallographic structure of oxyhaemoglobin (oxyHb) was completed in 1983, and differences between this real-space refined model and later R state models have been interpreted as evidence of crystallisation artefacts, or numerous sub-states. We have refined models of deoxy, oxy and carbonmonoxy Hb to 1.25 A resolution each, and compare them with other Hb structures. It is shown that the older structures reflect the software used in refinement, and many differences with newer structures are unlikely to be physiologically relevant. The improved accuracy of our models clarifies the disagreement between NMR and X-ray studies of oxyHb, the NMR experiments suggesting a hydrogen bond to exist between the distal histidine and oxygen ligand of both the alpha and beta-subunits. The high-resolution crystal structure also reveals a hydrogen bond in both subunit types, but with subtly different geometry which may explain the very different behaviour when this residue is mutated to glycine in alpha or beta globin. We also propose a new set of relatively fixed residues to act as a frame of reference; this set contains a similar number of atoms to the well-known "BGH" frame yet shows a much smaller rmsd value between R and T state models of HbA.
 
  Selected figure(s)  
 
Figure 1.
Figure 1. Stereo view of the final 2mF[o]–DF[c] electron density map for oxyHbA, showing (a) the ligand at the α haem and (b) the β chain. In the α subunit, a small peak of density (roughly 1.5σ) is found about 2.2 Å from the oxygen ligand and 3.1 Å from Leu29. Leu29 shows some sign of adopting more than one rotamer, which may allow a partially occupied water molecule into the haem pocket. Density is contoured at 1.5σ. It can be seen that the O2 atom of the ligand, not directly bonded to the haem, is better defined in the α pocket than in the β haem pocket density. The lower electron density in the β subunits is indicative of a weaker bond to the distal histidine and greater rotation about the Fe–O bond. Temperature factors for the O2 atoms are similar (35 Å^2and 33 Å^2 in the α and β subunits, respectively).
Figure 2.
Figure 2. Stereo view of the final 2mF[o]–DF[c] electron density map for COHb, showing (a) the α haem and (b) the β haem. Density is contoured at 1.5σ. The C termini of the α and β subunits are shown in (c) and (d), respectively. Tyr141α and Tyr145β show substantial shifts compared to PDB 1HHO.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2006, 360, 690-701) copyright 2006.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22922649 C.B.Andersen, M.Torvund-Jensen, M.J.Nielsen, C.L.de Oliveira, H.P.Hersleth, N.H.Andersen, J.S.Pedersen, G.R.Andersen, and S.K.Moestrup (2012).
Structure of the haptoglobin-haemoglobin complex.
  Nature, 489, 456-459.
PDB code: 4f4o
21420976 L.Makowski, J.Bardhan, D.Gore, J.Lal, S.Mandava, S.Park, D.J.Rodi, N.T.Ho, C.Ho, and R.F.Fischetti (2011).
WAXS studies of the structural diversity of hemoglobin in solution.
  J Mol Biol, 408, 909-921.  
21415366 S.Fischer, K.W.Olsen, K.Nam, and M.Karplus (2011).
Unsuspected pathway of the allosteric transition in hemoglobin.
  Proc Natl Acad Sci U S A, 108, 5608-5613.  
21425285 Y.Liu, and H.Sun (2011).
Electronic ground states and vibrational frequency shifts of diatomic ligands in heme adducts.
  J Comput Chem, 32, 1279-1285.  
20617196 H.Dong, S.Qin, and H.X.Zhou (2010).
Effects of macromolecular crowding on protein conformational changes.
  PLoS Comput Biol, 6, e1000833.  
20463873 J.S.Hub, M.B.Kubitzki, and B.L.de Groot (2010).
Spontaneous quaternary and tertiary T-R transitions of human hemoglobin in molecular dynamics simulation.
  PLoS Comput Biol, 6, e1000774.  
20436470 K.L.Campbell, J.E.Roberts, L.N.Watson, J.Stetefeld, A.M.Sloan, A.V.Signore, J.W.Howatt, J.R.Tame, N.Rohland, T.J.Shen, J.J.Austin, M.Hofreiter, C.Ho, R.E.Weber, and A.Cooper (2010).
Substitutions in woolly mammoth hemoglobin confer biochemical properties adaptive for cold tolerance.
  Nat Genet, 42, 536-540.  
20668762 R.M.Esquerra, I.López-Peña, P.Tipgunlakant, I.Birukou, R.L.Nguyen, J.Soman, J.S.Olson, D.S.Kliger, and R.A.Goldbeck (2010).
Kinetic spectroscopy of heme hydration and ligand binding in myoglobin and isolated hemoglobin chains: an optical window into heme pocket water dynamics.
  Phys Chem Chem Phys, 12, 10270-10278.  
19659437 T.L.Mollan, X.Yu, M.J.Weiss, and J.S.Olson (2010).
The role of alpha-hemoglobin stabilizing protein in redox chemistry, denaturation, and hemoglobin assembly.
  Antioxid Redox Signal, 12, 219-231.  
20519321 T.Shibata, S.Nagao, H.Tai, S.Nagatomo, H.Hamada, H.Yoshikawa, A.Suzuki, and Y.Yamamoto (2010).
Characterization of the acid-alkaline transition in the individual subunits of human adult and foetal methaemoglobins.
  J Biochem, 148, 217-229.  
19701784 Y.Aki, M.Nagai, Y.Nagai, K.Imai, M.Aki, A.Sato, M.Kubo, S.Nagatomo, and T.Kitagawa (2010).
Differences in coordination states of substituted tyrosine residues and quaternary structures among hemoglobin M probed by resonance Raman spectroscopy.
  J Biol Inorg Chem, 15, 147-158.  
19487440 D.J.Creek, E.Ryan, W.N.Charman, F.C.Chiu, R.J.Prankerd, J.L.Vennerstrom, and S.A.Charman (2009).
Stability of peroxide antimalarials in the presence of human hemoglobin.
  Antimicrob Agents Chemother, 53, 3496-3500.  
19353640 E.Dodson, and G.Dodson (2009).
Movements at the hemoglobin A-hemes and their role in ligand binding, analyzed by X-ray crystallography.
  Biopolymers, 91, 1056-1063.  
19368336 M.R.Kumar, D.Pervitsky, L.Chen, T.Poulos, S.Kundu, M.S.Hargrove, E.J.Rivera, A.Diaz, J.L.Colón, and P.J.Farmer (2009).
Nitrosyl hydride (HNO) as an O2 analogue: long-lived HNO adducts of ferrous globins.
  Biochemistry, 48, 5018-5025.  
19142675 R.J.Little, A.A.Pestano, and Z.Parra (2009).
Modeling of peroxide activation in artemisinin derivatives by serial docking.
  J Mol Model, 15, 847-858.  
18717535 A.D.Patel, J.M.Nocek, and B.M.Hoffman (2008).
Kinetic-dynamic model for conformational control of an electron transfer photocycle: mixed-metal hemoglobin hybrids.
  J Phys Chem B, 112, 11827-11837.  
18708462 A.M.Stadler, I.Digel, G.M.Artmann, J.P.Embs, G.Zaccai, and G.Büldt (2008).
Hemoglobin dynamics in red blood cells: correlation to body temperature.
  Biophys J, 95, 5449-5461.  
  18391424 A.Y.Kovalevsky, T.Chatake, N.Shibayama, S.Y.Park, T.Ishikawa, M.Mustyakimov, S.Z.Fisher, P.Langan, and Y.Morimoto (2008).
Preliminary time-of-flight neutron diffraction study of human deoxyhemoglobin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 270-273.  
18788751 D.H.Maillett, V.Simplaceanu, T.J.Shen, N.T.Ho, J.S.Olson, and C.Ho (2008).
Interfacial and distal-heme pocket mutations exhibit additive effects on the structure and function of hemoglobin.
  Biochemistry, 47, 10551-10563.  
17827244 D.I.Svergun, F.Ekström, K.D.Vandegriff, A.Malavalli, D.A.Baker, C.Nilsson, and R.M.Winslow (2008).
Solution structure of poly(ethylene) glycol-conjugated hemoglobin revealed by small-angle X-ray scattering: implications for a new oxygen therapeutic.
  Biophys J, 94, 173-181.  
18096633 M.Laberge, and T.Yonetani (2008).
Molecular dynamics simulations of hemoglobin A in different states and bound to DPG: effector-linked perturbation of tertiary conformations and HbA concerted dynamics.
  Biophys J, 94, 2737-2751.  
  18540052 P.S.Kaushal, R.Sankaranarayanan, and M.Vijayan (2008).
Water-mediated variability in the structure of relaxed-state haemoglobin.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 463-469.
PDB codes: 2zlt 2zlu 2zlv 2zlw 2zlx
17390129 K.F.Zerlin, N.Kasischke, I.Digel, C.Maggakis-Kelemen, A.Temiz Artmann, D.Porst, P.Kayser, P.Linder, and G.M.Artmann (2007).
Structural transition temperature of hemoglobins correlates with species' body temperature.
  Eur Biophys J, 37, 1.  
17691822 S.C.Sahu, V.Simplaceanu, Q.Gong, N.T.Ho, F.Tian, J.H.Prestegard, and C.Ho (2007).
Insights into the solution structure of human deoxyhemoglobin in the absence and presence of an allosteric effector.
  Biochemistry, 46, 9973-9980.  
17497935 X.J.Song, Y.Yuan, V.Simplaceanu, S.C.Sahu, N.T.Ho, and C.Ho (2007).
A comparative NMR study of the polypeptide backbone dynamics of hemoglobin in the deoxy and carbonmonoxy forms.
  Biochemistry, 46, 6795-6803.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer