spacer
spacer

PDBsum entry 2z73

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Membrane protein PDB id
2z73

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
350 a.a. *
Ligands
BOG ×2
RET ×2
PLM ×4
TWT ×2
SO4
PC1
Waters ×57
* Residue conservation analysis
PDB id:
2z73
Name: Membrane protein
Title: Crystal structure of squid rhodopsin
Structure: Rhodopsin. Chain: a, b
Source: Todarodes pacificus. Japanese flying squid
Resolution:
2.50Å     R-factor:   0.188     R-free:   0.206
Authors: M.Murakami,T.Kouyama
Key ref:
M.Murakami and T.Kouyama (2008). Crystal structure of squid rhodopsin. Nature, 453, 363-367. PubMed id: 18480818 DOI: 10.1038/nature06925
Date:
13-Aug-07     Release date:   13-May-08    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P31356  (OPSD_TODPA) -  Rhodopsin from Todarodes pacificus
Seq:
Struc:
448 a.a.
350 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1038/nature06925 Nature 453:363-367 (2008)
PubMed id: 18480818  
 
 
Crystal structure of squid rhodopsin.
M.Murakami, T.Kouyama.
 
  ABSTRACT  
 
Invertebrate phototransduction uses an inositol-1,4,5-trisphosphate signalling cascade in which photoactivated rhodopsin stimulates a G(q)-type G protein, that is, a class of G protein that stimulates membrane-bound phospholipase Cbeta. The same cascade is used by many G-protein-coupled receptors, indicating that invertebrate rhodopsin is a prototypical member. Here we report the crystal structure of squid (Todarodes pacificus) rhodopsin at 2.5 A resolution. Among seven transmembrane alpha-helices, helices V and VI extend into the cytoplasmic medium and, together with two cytoplasmic helices, they form a rigid protrusion from the membrane surface. This peculiar structure, which is not seen in bovine rhodopsin, seems to be crucial for the recognition of G(q)-type G proteins. The retinal Schiff base forms a hydrogen bond to Asn 87 or Tyr 111; it is far from the putative counterion Glu 180. In the crystal, a tight association is formed between the amino-terminal polypeptides of neighbouring monomers; this intermembrane dimerization may be responsible for the organization of hexagonally packed microvillar membranes in the photoreceptor rhabdom.
 
  Selected figure(s)  
 
Figure 1.
Figure 1: Schematic diagram of the topology of squid rhodopsin. -Helices are denoted by black rectangles, 3[10] helices as grey rectangles and -strands as open arrows. In the current structural model, the polypeptide chain is traced from Glu 9 to Glu 358 (shown by black letters). Grey letters indicate residues that are truncated or disordered. Retinal bound to Lys 305 and palmitoyl bound to Cys 337 are included in the structural model. A disulphide bond is formed between Cys 108 and Cys 186. The counterion Glu 180, residues within 3.5 Å of the Schiff base and within 4 Å of the retinal polyene chain are circled by red, purple and green lines, respectively. Positively and negatively ionizable residues are marked with blue and pink circles, respectively.
Figure 3.
Figure 3: Structural comparisons between squid rhodopsin and bovine rhodopsin. Squid rhodopsin is denoted by brown and magenta; bovine rhodopsin by cyan and blue.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2008, 453, 363-367) copyright 2008.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
23407534 A.J.Venkatakrishnan, X.Deupi, G.Lebon, C.G.Tate, G.F.Schertler, and M.M.Babu (2013).
Molecular signatures of G-protein-coupled receptors.
  Nature, 494, 185-194.  
23237917 R.C.Stevens, V.Cherezov, V.Katritch, R.Abagyan, P.Kuhn, H.Rosen, and K.Wüthrich (2012).
The GPCR Network: a large-scale collaboration to determine human GPCR structure and function.
  Nat Rev Drug Discov, 12, 25-34.  
22286059 T.Hino, T.Arakawa, H.Iwanari, T.Yurugi-Kobayashi, C.Ikeda-Suno, Y.Nakada-Nakura, O.Kusano-Arai, S.Weyand, T.Shimamura, N.Nomura, A.D.Cameron, T.Kobayashi, T.Hamakubo, S.Iwata, and T.Murata (2012).
G-protein-coupled receptor inactivation by an allosteric inverse-agonist antibody.
  Nature, 482, 237-240.
PDB codes: 3vg9 3vga
21440362 H.Liu, H.Ge, Y.Peng, P.Xiao, and J.Xu (2011).
Molecular mechanism of action for reversible P2Y12 antagonists.
  Biophys Chem, 155, 74-81.  
20708633 H.W.Choe, J.H.Park, Y.J.Kim, and O.P.Ernst (2011).
Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures.
  Neuropharmacology, 60, 52-57.  
21376730 I.Dodevski, and A.Plückthun (2011).
Evolution of three human GPCRs for higher expression and stability.
  J Mol Biol, 408, 599-615.  
21282166 N.W.Roberts, M.L.Porter, and T.W.Cronin (2011).
The molecular basis of mechanisms underlying polarization vision.
  Philos Trans R Soc Lond B Biol Sci, 366, 627-637.  
21478852 R.M.Bill, P.J.Henderson, S.Iwata, E.R.Kunji, H.Michel, R.Neutze, S.Newstead, B.Poolman, C.G.Tate, and H.Vogel (2011).
Overcoming barriers to membrane protein structure determination.
  Nat Biotechnol, 29, 335-340.  
21244428 R.Stadel, K.H.Ahn, and D.A.Kendall (2011).
The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.
  J Neurochem, 117, 1.  
21697825 T.Shimamura, M.Shiroishi, S.Weyand, H.Tsujimoto, G.Winter, V.Katritch, R.Abagyan, V.Cherezov, W.Liu, G.W.Han, T.Kobayashi, R.C.Stevens, and S.Iwata (2011).
Structure of the human histamine H1 receptor complex with doxepin.
  Nature, 475, 65-70.
PDB code: 3rze
20672377 V.Pabuwal, and Z.Li (2011).
Comparison analysis of primary ligand-binding sites in seven-helix membrane proteins.
  Biopolymers, 95, 31-38.  
19551412 A.Rayan (2010).
New vistas in GPCR 3D structure prediction.
  J Mol Model, 16, 183-191.  
20880955 A.Wuster, A.J.Venkatakrishnan, G.F.Schertler, and M.M.Babu (2010).
Spial: analysis of subtype-specific features in multiple sequence alignments of proteins.
  Bioinformatics, 26, 2906-2907.  
20839295 C.J.Illingworth, P.D.Scott, K.E.Parkes, C.R.Snell, M.P.Campbell, and C.A.Reynolds (2010).
Connectivity and binding-site recognition: applications relevant to drug design.
  J Comput Chem, 31, 2677-2688.  
20233425 C.Parravicini, M.P.Abbracchio, P.Fantucci, and G.Ranghino (2010).
Forced unbinding of GPR17 ligands from wild type and R255I mutant receptor models through a computational approach.
  BMC Struct Biol, 10, 8.  
20305779 G.Kleinau, H.Jaeschke, C.L.Worth, S.Mueller, J.Gonzalez, R.Paschke, and G.Krause (2010).
Principles and determinants of G-protein coupling by the rhodopsin-like thyrotropin receptor.
  PLoS One, 5, e9745.  
19731375 G.V.Nikiforovich, C.M.Taylor, G.R.Marshall, and T.J.Baranski (2010).
Modeling the possible conformations of the extracellular loops in G-protein-coupled receptors.
  Proteins, 78, 271-285.  
  21297892 H.C.Watanabe, Y.Mori, T.Tada, S.Yokoyama, and T.Yamato (2010).
Molecular mechanism of long-range synergetic color tuning between multiple amino acid residues in conger rhodopsin.
  Biophysics (Oxf), 6, 67-68.  
20852774 H.Tsukamoto, and A.Terakita (2010).
Diversity and functional properties of bistable pigments.
  Photochem Photobiol Sci, 9, 1435-1443.  
20053991 H.Tsukamoto, A.Terakita, and Y.Shichida (2010).
A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
  J Biol Chem, 285, 7351-7357.  
19785456 I.Bahar, T.R.Lezon, A.Bakan, and I.H.Shrivastava (2010).
Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins.
  Chem Rev, 110, 1463-1497.  
  20633362 J.A.Goncalves, S.Ahuja, S.Erfani, M.Eilers, and S.O.Smith (2010).
Structure and function of G protein-coupled receptors using NMR spectroscopy.
  Prog Nucl Magn Reson Spectrosc, 57, 159-180.  
20520658 J.J.Tesmer (2010).
The quest to understand heterotrimeric G protein signaling.
  Nat Struct Mol Biol, 17, 650-652.  
20370713 J.Y.Shim (2010).
Understanding functional residues of the cannabinoid CB1.
  Curr Top Med Chem, 10, 779-798.  
20544180 K.E.Komolov, M.Aguilà, D.Toledo, J.Manyosa, P.Garriga, and K.W.Koch (2010).
On-chip photoactivation of heterologously expressed rhodopsin allows kinetic analysis of G-protein signaling by surface plasmon resonance spectroscopy.
  Anal Bioanal Chem, 397, 2967-2976.  
20025243 K.H.Ahn, A.Nishiyama, D.F.Mierke, and D.A.Kendall (2010).
Hydrophobic residues in helix 8 of cannabinoid receptor 1 are critical for structural and functional properties.
  Biochemistry, 49, 502-511.  
20667175 K.R.Vinothkumar, and R.Henderson (2010).
Structures of membrane proteins.
  Q Rev Biophys, 43, 65.  
20886156 K.Sakai, Y.Imamoto, T.Yamashita, and Y.Shichida (2010).
Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants.
  Photochem Photobiol Sci, 9, 1490-1497.  
20842311 K.Tsutsui, and Y.Shichida (2010).
Multiple functions of Schiff base counterion in rhodopsins.
  Photochem Photobiol Sci, 9, 1426-1434.  
20979597 M.Abraham-Nordling, B.Persson, and E.Nordling (2010).
Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues.
  BMC Res Notes, 3, 270.  
19465029 M.Filizola (2010).
Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?
  Life Sci, 86, 590-597.  
21152433 M.M.Bonde, J.T.Hansen, S.J.Sanni, S.Haunsø, S.Gammeltoft, C.Lyngsø, and J.L.Hansen (2010).
Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms.
  PLoS One, 5, e14135.  
20544957 M.Michino, J.Chen, R.C.Stevens, and C.L.Brooks (2010).
FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A.
  Proteins, 78, 2189-2201.  
20739006 M.Miyano, H.Ago, H.Saino, T.Hori, and K.Ida (2010).
Internally bridging water molecule in transmembrane alpha-helical kink.
  Curr Opin Struct Biol, 20, 456-463.  
21124838 M.Wakakuwa, A.Terakita, M.Koyanagi, D.G.Stavenga, Y.Shichida, and K.Arikawa (2010).
Evolution and mechanism of spectral tuning of blue-absorbing visual pigments in butterflies.
  PLoS One, 5, e15015.  
20066712 S.Sekharan, A.Altun, and K.Morokuma (2010).
Photochemistry of visual pigment in a G(q) protein-coupled receptor (GPCR)--insights from structural and spectral tuning studies on squid rhodopsin.
  Chemistry, 16, 1744-1749.  
  20396622 S.Sekharan, and K.Morokuma (2010).
Drawing the Retinal Out of Its Comfort Zone: An ONIOM(QM/MM) Study of Mutant Squid Rhodopsin.
  J Phys Chem Lett, 1, 668-672.  
20931138 T.Kouyama, and M.Murakami (2010).
Structural divergence and functional versatility of the rhodopsin superfamily.
  Photochem Photobiol Sci, 9, 1458-1465.  
20047303 T.Orban, S.Gupta, K.Palczewski, and M.R.Chance (2010).
Visualizing water molecules in transmembrane proteins using radiolytic labeling methods.
  Biochemistry, 49, 827-834.  
20605788 T.Sakurai, T.Misaka, M.Ishiguro, K.Masuda, T.Sugawara, K.Ito, T.Kobayashi, S.Matsuo, Y.Ishimaru, T.Asakura, and K.Abe (2010).
Characterization of the beta-D-glucopyranoside binding site of the human bitter taste receptor hTAS2R16.
  J Biol Chem, 285, 28373-28378.  
20883329 T.W.Cronin, M.L.Porter, M.J.Bok, J.B.Wolf, and P.R.Robinson (2010).
The molecular genetics and evolution of colour and polarization vision in stomatopod crustaceans.
  Ophthalmic Physiol Opt, 30, 460-469.  
21135214 T.Yamashita, H.Ohuchi, S.Tomonari, K.Ikeda, K.Sakai, and Y.Shichida (2010).
Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein.
  Proc Natl Acad Sci U S A, 107, 22084-22089.  
20538452 V.P.Jaakola, and A.P.Ijzerman (2010).
The crystallographic structure of the human adenosine A2A receptor in a high-affinity antagonist-bound state: implications for GPCR drug screening and design.
  Curr Opin Struct Biol, 20, 401-414.  
20811630 X.Biarnés, A.Marchiori, A.Giorgetti, C.Lanzara, P.Gasparini, P.Carloni, S.Born, A.Brockhoff, M.Behrens, and W.Meyerhof (2010).
Insights into the binding of Phenyltiocarbamide (PTC) agonist to its target human TAS2R38 bitter receptor.
  PLoS One, 5, e12394.  
  20948675 A.B.Tobin (2009).
G-protein-coupled receptor structure: what can we learn?
  F1000 Biol Rep, 1, 0.  
19309698 A.Martin, M.Damian, M.Laguerre, J.Parello, B.Pucci, L.Serre, S.Mary, J.Marie, and J.L.Banères (2009).
Engineering a G protein-coupled receptor for structural studies: stabilization of the BLT1 receptor ground state.
  Protein Sci, 18, 727-734.  
19756152 C.L.Worth, G.Kleinau, and G.Krause (2009).
Comparative sequence and structural analyses of G-protein-coupled receptor crystal structures and implications for molecular models.
  PLoS One, 4, e7011.  
18945819 D.Mustafi, and K.Palczewski (2009).
Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors.
  Mol Pharmacol, 75, 1.  
19339946 D.T.Lodowski, and K.Palczewski (2009).
Chemokine receptors and other G protein-coupled receptors.
  Curr Opin HIV AIDS, 4, 88-95.  
19192200 D.T.Lodowski, T.E.Angel, and K.Palczewski (2009).
Comparative Analysis of GPCR Crystal Structures.
  Photochem Photobiol, 85, 425-430.  
19348742 E.Jardón-Valadez, A.N.Bondar, and D.J.Tobias (2009).
Dynamics of the internal water molecules in squid rhodopsin.
  Biophys J, 96, 2572-2576.  
19126545 E.Salcedo, D.M.Farrell, L.Zheng, M.Phistry, E.E.Bagg, and S.G.Britt (2009).
The green-absorbing Drosophila Rh6 visual pigment contains a blue-shifting amino acid substitution that is conserved in vertebrates.
  J Biol Chem, 284, 5717-5722.  
19152328 G.K.Umanah, C.Son, F.Ding, F.Naider, and J.M.Becker (2009).
Cross-linking of a DOPA-containing peptide ligand into its G protein-coupled receptor.
  Biochemistry, 48, 2033-2044.  
18828176 G.Skretas, and G.Georgiou (2009).
Genetic analysis of G protein-coupled receptor expression in Escherichia coli: inhibitory role of DnaJ on the membrane integration of the human central cannabinoid receptor.
  Biotechnol Bioeng, 102, 357-367.  
19190775 H.J.Atkinson, J.H.Morris, T.E.Ferrin, and P.C.Babbitt (2009).
Using sequence similarity networks for visualization of relationships across diverse protein superfamilies.
  PLoS ONE, 4, e4345.  
19497849 H.Tsukamoto, D.L.Farrens, M.Koyanagi, and A.Terakita (2009).
The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins.
  J Biol Chem, 284, 20676-20683.  
19276075 I.Domazet, B.J.Holleran, S.S.Martin, P.Lavigne, R.Leduc, E.Escher, and G.Guillemette (2009).
The Second Transmembrane Domain of the Human Type 1 Angiotensin II Receptor Participates in the Formation of the Ligand Binding Pocket and Undergoes Integral Pivoting Movement during the Process of Receptor Activation.
  J Biol Chem, 284, 11922-11929.  
19773549 I.Domazet, S.S.Martin, B.J.Holleran, M.E.Morin, P.Lacasse, P.Lavigne, E.Escher, R.Leduc, and G.Guillemette (2009).
The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.
  J Biol Chem, 284, 31953-31961.  
19572012 I.Kock, N.A.Bulgakova, E.Knust, I.Sinning, and V.Panneels (2009).
Targeting of Drosophila rhodopsin requires helix 8 but not the distal C-terminus.
  PLoS One, 4, e6101.  
19627087 J.C.Mobarec, R.Sanchez, and M.Filizola (2009).
Modern homology modeling of G-protein coupled receptors: which structural template to use?
  J Med Chem, 52, 5207-5216.  
19274719 K.H.Ahn, M.Pellegrini, N.Tsomaia, A.K.Yatawara, D.A.Kendall, and D.F.Mierke (2009).
Structural analysis of the human cannabinoid receptor one carboxyl-terminus identifies two amphipathic helices.
  Biopolymers, 91, 565-573.  
19836958 K.P.Hofmann, P.Scheerer, P.W.Hildebrand, H.W.Choe, J.H.Park, M.Heck, and O.P.Ernst (2009).
A G protein-coupled receptor at work: the rhodopsin model.
  Trends Biochem Sci, 34, 540-552.  
19837030 K.W.Yau, and R.C.Hardie (2009).
Phototransduction motifs and variations.
  Cell, 139, 246-264.  
19141277 M.A.Hanson, and R.C.Stevens (2009).
Discovery of new GPCR biology: one receptor structure at a time.
  Structure, 17, 8.  
19635801 M.Clément, J.Cabana, B.J.Holleran, R.Leduc, G.Guillemette, P.Lavigne, and E.Escher (2009).
Activation induces structural changes in the liganded angiotensin II type 1 receptor.
  J Biol Chem, 284, 26603-26612.  
19166508 R.J.Ward, L.Jenkins, and G.Milligan (2009).
Selectivity and functional consequences of interactions of family A G protein-coupled receptors with neurochondrin and periplakin.
  J Neurochem, 109, 182-192.  
19375807 R.Nygaard, T.M.Frimurer, B.Holst, M.M.Rosenkilde, and T.W.Schwartz (2009).
Ligand binding and micro-switches in 7TM receptor structures.
  Trends Pharmacol Sci, 30, 249-259.  
19103592 R.T.Strachan, D.J.Sheffler, B.Willard, M.Kinter, J.G.Kiselar, and B.L.Roth (2009).
Ribosomal S6 kinase 2 directly phosphorylates the 5-hydroxytryptamine 2A (5-HT2A) serotonin receptor, thereby modulating 5-HT2A signaling.
  J Biol Chem, 284, 5557-5573.  
20028316 S.Costanzi, J.Siegel, I.G.Tikhonova, and K.A.Jacobson (2009).
Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors.
  Curr Pharm Des, 15, 3994-4002.  
19458709 S.H.White (2009).
Biophysical dissection of membrane proteins.
  Nature, 459, 344-346.  
19275940 S.J.Allen, S.Ribeiro, R.Horuk, and T.M.Handel (2009).
Expression, purification and in vitro functional reconstitution of the chemokine receptor CCR1.
  Protein Expr Purif, 66, 73-81.  
19433801 T.E.Angel, M.R.Chance, and K.Palczewski (2009).
Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
  Proc Natl Acad Sci U S A, 106, 8555-8560.  
19706523 T.E.Angel, S.Gupta, B.Jastrzebska, K.Palczewski, and M.R.Chance (2009).
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
  Proc Natl Acad Sci U S A, 106, 14367-14372.  
19643594 T.Hirai, S.Subramaniam, and J.K.Lanyi (2009).
Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin.
  Curr Opin Struct Biol, 19, 433-439.  
19790201 T.Zdobinsky, J.Scherkenbeck, O.Zerbe, H.Antonicek, and H.Chen (2009).
Structures of micelle-bound selected insect neuropeptides and analogues: implications for receptor selection.
  Chembiochem, 10, 2644-2653.  
19187030 V.B.Bergo, E.N.Spudich, J.L.Spudich, and K.J.Rothschild (2009).
Active water in protein-protein communication within the membrane: the case of SRII-HtrII signal relay.
  Biochemistry, 48, 811-813.  
19470481 X.J.Yao, G.Vélez Ruiz, M.R.Whorton, S.G.Rasmussen, B.T.DeVree, X.Deupi, R.K.Sunahara, and B.Kobilka (2009).
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex.
  Proc Natl Acad Sci U S A, 106, 9501-9506.  
19422831 Y.Shibata, J.F.White, M.J.Serrano-Vega, F.Magnani, A.L.Aloia, R.Grisshammer, and C.G.Tate (2009).
Thermostabilization of the neurotensin receptor NTS1.
  J Mol Biol, 390, 262-277.  
19720651 Y.Shichida, and T.Matsuyama (2009).
Evolution of opsins and phototransduction.
  Philos Trans R Soc Lond B Biol Sci, 364, 2881-2895.  
18593817 A.J.Link, G.Skretas, E.M.Strauch, N.S.Chari, and G.Georgiou (2008).
Efficient production of membrane-integrated and detergent-soluble G protein-coupled receptors in Escherichia coli.
  Protein Sci, 17, 1857-1863.  
18937032 C.Zou, F.Naider, and O.Zerbe (2008).
Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR.
  J Biomol NMR, 42, 257-269.  
18480801 G.F.Schertler (2008).
Signal transduction: the rhodopsin story continued.
  Nature, 453, 292-293.  
18838178 J.Wess, S.J.Han, S.K.Kim, K.A.Jacobson, and J.H.Li (2008).
Conformational changes involved in G-protein-coupled-receptor activation.
  Trends Pharmacol Sci, 29, 616-625.  
18818650 P.Scheerer, J.H.Park, P.W.Hildebrand, Y.J.Kim, N.Krauss, H.W.Choe, K.P.Hofmann, and O.P.Ernst (2008).
Crystal structure of opsin in its G-protein-interacting conformation.
  Nature, 455, 497-502.
PDB code: 3dqb
18832607 V.P.Jaakola, M.T.Griffith, M.A.Hanson, V.Cherezov, E.Y.Chien, J.R.Lane, A.P.Ijzerman, and R.C.Stevens (2008).
The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist.
  Science, 322, 1211-1217.
PDB code: 3eml
18957321 W.I.Weis, and B.K.Kobilka (2008).
Structural insights into G-protein-coupled receptor activation.
  Curr Opin Struct Biol, 18, 734-740.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer