spacer
spacer

PDBsum entry 1noc

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Complex (oxidoreductase/transferase) PDB id
1noc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
372 a.a. *
213 a.a. *
Ligands
HEM-IMD
IMD
Waters ×140
* Residue conservation analysis
PDB id:
1noc
Name: Complex (oxidoreductase/transferase)
Title: Murine inducible nitric oxide synthase oxygenase domain (delta 114) complexed with type i e. Coli chloramphenicol acetyl transferase and imidazole
Structure: Inducible nitric oxide synthase. Chain: a. Fragment: oxygenase domain 115-498. Engineered: yes. Type 1 chloramphenicol acetyltransferase. Chain: b. Ec: 2.3.1.28
Source: Mus musculus. House mouse. Organism_taxid: 10090. Cell: macrophage. Expressed in: escherichia coli. Expression_system_taxid: 562. Escherichia coli. Organism_taxid: 562
Biol. unit: Trimer (from PDB file)
Resolution:
2.60Å     R-factor:   0.221     R-free:   0.257
Authors: B.R.Crane,A.S.Arvai,E.D.Getzoff,D.J.Stuehr,J.A.Tainer
Key ref:
B.R.Crane et al. (1997). The structure of nitric oxide synthase oxygenase domain and inhibitor complexes. Science, 278, 425-431. PubMed id: 9334294 DOI: 10.1126/science.278.5337.425
Date:
28-Sep-97     Release date:   14-Oct-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P29477  (NOS2_MOUSE) -  Nitric oxide synthase, inducible from Mus musculus
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1144 a.a.
372 a.a.
Protein chain
Pfam   ArchSchema ?
P62577  (CAT_ECOLX) -  Chloramphenicol acetyltransferase from Escherichia coli
Seq:
Struc:
219 a.a.
213 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: Chain A: E.C.1.14.13.39  - nitric-oxide synthase (NADPH).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 L-arginine + 3 NADPH + 4 O2 + H+ = 2 L-citrulline + 2 nitric oxide + 3 NADP+ + 4 H2O
2 × L-arginine
+
3 × NADPH
Bound ligand (Het Group name = IMD)
matches with 41.67% similarity
+ 4 × O2
+ H(+)
= 2 × L-citrulline
+ 2 × nitric oxide
+ 3 × NADP(+)
+ 4 × H2O
   Enzyme class 3: Chain B: E.C.2.3.1.28  - chloramphenicol O-acetyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: chloramphenicol + acetyl-CoA = chloramphenicol 3-acetate + CoA
2 × chloramphenicol
+ 3 × acetyl-CoA
= 4 × chloramphenicol 3-acetate
+ CoA
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1126/science.278.5337.425 Science 278:425-431 (1997)
PubMed id: 9334294  
 
 
The structure of nitric oxide synthase oxygenase domain and inhibitor complexes.
B.R.Crane, A.S.Arvai, R.Gachhui, C.Wu, D.K.Ghosh, E.D.Getzoff, D.J.Stuehr, J.A.Tainer.
 
  ABSTRACT  
 
The nitric oxide synthase oxygenase domain (NOSox) oxidizes arginine to synthesize the cellular signal and defensive cytotoxin nitric oxide (NO). Crystal structures determined for cytokine-inducible NOSox reveal an unusual fold and heme environment for stabilization of activated oxygen intermediates key for catalysis. A winged beta sheet engenders a curved alpha-beta domain resembling a baseball catcher's mitt with heme clasped in the palm. The location of exposed hydrophobic residues and the results of mutational analysis place the dimer interface adjacent to the heme-binding pocket. Juxtaposed hydrophobic O2- and polar L-arginine-binding sites occupied by imidazole and aminoguanidine, respectively, provide a template for designing dual-function inhibitors and imply substrate-assisted catalysis.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Mobility, surface properties, and shape. (A) C trace of NOS[ox] 114 (cubic crystal form) colored by the crystallographic^ temperature factor (low to high B factors colored blue to red) and displayed with heme and mutation sites that affect function. Mutation sites (side chains displayed and labeled by residue number) affecting dimerization, L-Arg binding, or H[4]B binding (defined^ in Fig. 2) cluster to highly mobile (red) projecting regions. The view is rotated by about 45° from Fig. 1 about a vertical axis. (B) Solvent-accessible molecular surface of flattened^ (left) and concave (center) face. The orientation is the same^ as in (A). The exposed heme edge (gold), residues contributing to the distal pocket (cyan), and exposed conserved hydrophobic^ residues (green) (defined in Fig. 2) map to the same flattened^ face of the molecule and cluster in the regions of high mobility and mutational sensitivity shown in (A), making this surface the^ prime candidate for a symmetric dimer interface. (C) Solvent-accessible^ molecular surface of the narrow curved face. This face has few conserved exposed hydrophobic residues. The view is rotated 90° from (A) and (B) around a vertical axis.
Figure 5.
Fig. 5. Comparison of the proximal heme-binding regions of iNOS[ox] and cytochrome P450s. Structural elements contributing to the proximal heme-binding regions of iNOS[ox] 114 and P450[cam] (cyan C traces) are substantially different. Only the proximal Cys ligands (magenta bonds with yellow sulfur atoms, bound to gold^ hemes) and immediately COOH-terminal three residues (magenta C traces) have similar conformations. In iNOS[ox], Cys194 lies at the COOH-terminal end of a helix and precedes an extended^ strand, whereas in P450[cam], Cys357 lies at the NH[2]-terminal end of a helix and follows an extended^ strand. Also, these two cysteine thiolates bind opposite faces of iron protoporphyrin IX. C positions for iNOS[ox] 114 residues 194 to 197 were superimposed with P450[cam] residues 357^ to 360 and then separated for clarity.
 
  The above figures are reprinted by permission from the AAAs: Science (1997, 278, 425-431) copyright 1997.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20370423 B.R.Crane, J.Sudhamsu, and B.A.Patel (2010).
Bacterial nitric oxide synthases.
  Annu Rev Biochem, 79, 445-470.  
20226211 D.Schade, J.Kotthaus, and B.Clement (2010).
Modulating the NO generating system from a medicinal chemistry perspective: current trends and therapeutic options in cardiovascular disease.
  Pharmacol Ther, 126, 279-300.  
19583767 D.J.Stuehr, J.Tejero, and M.M.Haque (2009).
Structural and mechanistic aspects of flavoproteins: electron transfer through the nitric oxide synthase flavoprotein domain.
  FEBS J, 276, 3959-3974.  
19473991 M.M.Haque, M.Fadlalla, Z.Q.Wang, S.S.Ray, K.Panda, and D.J.Stuehr (2009).
Neutralizing a surface charge on the FMN subdomain increases the activity of neuronal nitric-oxide synthase by enhancing the oxygen reactivity of the enzyme heme-nitric oxide complex.
  J Biol Chem, 284, 19237-19247.  
19154146 R.B.Silverman (2009).
Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases.
  Acc Chem Res, 42, 439-451.  
18539530 B.Ozüyaman, M.Grau, M.Kelm, M.W.Merx, and P.Kleinbongard (2008).
RBC NOS: regulatory mechanisms and therapeutic aspects.
  Trends Mol Med, 14, 314-322.  
18849972 E.D.Garcin, A.S.Arvai, R.J.Rosenfeld, M.D.Kroeger, B.R.Crane, G.Andersson, G.Andrews, P.J.Hamley, P.R.Mallinder, D.J.Nicholls, S.A.St-Gallay, A.C.Tinker, N.P.Gensmantel, A.Mete, D.R.Cheshire, S.Connolly, D.J.Stuehr, A.Aberg, A.V.Wallace, J.A.Tainer, and E.D.Getzoff (2008).
Anchored plasticity opens doors for selective inhibitor design in nitric oxide synthase.
  Nat Chem Biol, 4, 700-707.
PDB codes: 3e65 3e67 3e68 3e6l 3e6n 3e6o 3e6t 3e7g 3e7i 3e7m 3e7s 3e7t 3eah 3eai 3ebd 3ebf 3ej8
18980232 H.Ohtsuki, J.Yokoyama, N.Ohba, Y.Ohmiya, and M.Kawata (2008).
Nitric oxide synthase (NOS) in the Japanese fireflies Luciola lateralis and Luciola cruciata.
  Arch Insect Biochem Physiol, 69, 176-188.  
18815130 J.Tejero, A.Biswas, Z.Q.Wang, R.C.Page, M.M.Haque, C.Hemann, J.L.Zweier, S.Misra, and D.J.Stuehr (2008).
Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase.
  J Biol Chem, 283, 33498-33507.
PDB code: 3dwj
18193303 S.M.Francis, A.Mittal, M.Sharma, and P.V.Bharatam (2008).
Design of benzene-1,2-diamines as selective inducible nitric oxide synthase inhibitors: a combined de novo design and docking analysis.
  J Mol Model, 14, 215-224.  
17534532 A.W.Munro, H.M.Girvan, and K.J.McLean (2007).
Variations on a (t)heme--novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily.
  Nat Prod Rep, 24, 585-609.  
18836533 C.Wheatley (2007).
The return of the Scarlet Pimpernel: cobalamin in inflammation II - cobalamins can both selectively promote all three nitric oxide synthases (NOS), particularly iNOS and eNOS, and, as needed, selectively inhibit iNOS and nNOS.
  J Nutr Environ Med, 16, 181-211.  
18923642 C.Wheatley (2007).
Cobalamin in inflammation III - glutathionylcobalamin and methylcobalamin/adenosylcobalamin coenzymes: the sword in the stone? How cobalamin may directly regulate the nitric oxide synthases.
  J Nutr Environ Med, 16, 212-226.  
17174478 J.J.Perry, L.Fan, and J.A.Tainer (2007).
Developing master keys to brain pathology, cancer and aging from the structural biology of proteins controlling reactive oxygen species and DNA repair.
  Neuroscience, 145, 1280-1299.  
17536854 Y.H.Le Nguyen, J.R.Winkler, and H.B.Gray (2007).
Probing heme coordination states of inducible nitric oxide synthase with a ReI(imidazole-alkyl-nitroarginine) sensitizer-wire.
  J Phys Chem B, 111, 6628-6633.  
16572228 L.E.Llewellyn (2006).
Saxitoxin, a toxic marine natural product that targets a multitude of receptors.
  Nat Prod Rep, 23, 200-222.  
16411020 R.Sengupta, R.Sahoo, S.S.Ray, T.Dutta, A.Dasgupta, and S.Ghosh (2006).
Dissociation and unfolding of inducible nitric oxide synthase oxygenase domain identifies structural role of tetrahydrobiopterin in modulating the heme environment.
  Mol Cell Biochem, 284, 117-126.  
16741585 T.L.Pukala, J.H.Bowie, V.M.Maselli, I.F.Musgrave, and M.J.Tyler (2006).
Host-defence peptides from the glandular secretions of amphibians: structure and activity.
  Nat Prod Rep, 23, 368-393.  
16234921 D.J.Stuehr, C.C.Wei, Z.Wang, and R.Hille (2005).
Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases.
  Dalton Trans, (), 3427-3435.  
16172396 P.A.Loughran, D.B.Stolz, Y.Vodovotz, S.C.Watkins, R.L.Simmons, and T.R.Billiar (2005).
Monomeric inducible nitric oxide synthase localizes to peroxisomes in hepatocytes.
  Proc Natl Acad Sci U S A, 102, 13837-13842.  
15224385 H.Matter, and P.Kotsonis (2004).
Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents.
  Med Res Rev, 24, 662-684.  
15520379 M.R.Buddha, K.M.Keery, and B.R.Crane (2004).
An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans.
  Proc Natl Acad Sci U S A, 101, 15881-15886.  
15071192 R.Fedorov, R.Vasan, D.K.Ghosh, and I.Schlichting (2004).
Structures of nitric oxide synthase isoforms complexed with the inhibitor AR-R17477 suggest a rational basis for specificity and inhibitor design.
  Proc Natl Acad Sci U S A, 101, 5892-5897.
PDB codes: 1vaf 1vag
15133224 S.Ueda, H.Terauchi, M.Kawasaki, A.Yano, and M.Ido (2004).
Structure-activity relationships of 2-aminothiazole derivatives as inducible nitric oxide synthase inhibitor.
  Chem Pharm Bull (Tokyo), 52, 634-637.  
12056914 A.C.Gorren, K.Schmidt, and B.Mayer (2002).
Binding of L-arginine and imidazole suggests heterogeneity of rat brain neuronal nitric oxide synthase.
  Biochemistry, 41, 7819-7829.  
11784303 J.Doyle, L.E.Llewellyn, C.S.Brinkworth, J.H.Bowie, K.L.Wegener, T.Rozek, P.A.Wabnitz, J.C.Wallace, and M.J.Tyler (2002).
Amphibian peptides that inhibit neuronal nitric oxide synthase. Isolation of lesuerin from the skin secretion of the Australian Stony Creek frog Litoria lesueuri.
  Eur J Biochem, 269, 100-109.  
11980473 J.P.Schelvis, V.Berka, G.T.Babcock, and A.L.Tsai (2002).
Resonance Raman detection of the Fe-S bond in endothelial nitric oxide synthase.
  Biochemistry, 41, 5695-5701.  
  12076969 K.K.Wu (2002).
Regulation of endothelial nitric oxide synthase activity and gene expression.
  Ann N Y Acad Sci, 962, 122-130.  
12220171 K.Pant, A.M.Bilwes, S.Adak, D.J.Stuehr, and B.R.Crane (2002).
Structure of a nitric oxide synthase heme protein from Bacillus subtilis.
  Biochemistry, 41, 11071-11079.
PDB codes: 1m7v 1m7z
11846789 P.Ascenzi, M.Fasano, M.Marino, G.Venturini, and R.Federico (2002).
Agmatine oxidation by copper amine oxidase.
  Eur J Biochem, 269, 884-892.  
12039006 Y.Watanabe (2002).
Construction of heme enzymes: four approaches.
  Curr Opin Chem Biol, 6, 208-216.  
11275480 A.Reif, L.Zecca, P.Riederer, M.Feelisch, and H.H.Schmidt (2001).
Nitroxyl oxidizes NADPH in a superoxide dismutase inhibitable manner.
  Free Radic Biol Med, 30, 803-808.  
11517317 D.K.Ghosh, M.B.Rashid, B.Crane, V.Taskar, M.Mast, M.A.Misukonis, J.B.Weinberg, and N.T.Eissa (2001).
Characterization of key residues in the subdomain encoded by exons 8 and 9 of human inducible nitric oxide synthase: a critical role for Asp-280 in substrate binding and subunit interactions.
  Proc Natl Acad Sci U S A, 98, 10392-10397.  
11240372 H.Jiang, M.Ichikawa, A.Furukawa, S.Tomita, T.Ohnishi, and Y.Ichikawa (2001).
The optical interconversion of the P-450 and P-420 forms of neuronal nitric oxide synthase: effects of sodium cholate, mercury chloride and urea.
  Int J Biochem Cell Biol, 33, 155-162.  
11389602 H.M.Abu-Soud, K.Ichimori, H.Nakazawa, and D.J.Stuehr (2001).
Regulation of inducible nitric oxide synthase by self-generated NO.
  Biochemistry, 40, 6876-6881.  
11294640 K.R.Wolthers, and M.I.Schimerlik (2001).
Reaction of neuronal nitric-oxide synthase with 2,6-dichloroindolphenol and cytochrome c3+: influence of the electron acceptor and binding of Ca2+-activated calmodulin on the kinetic mechanism.
  Biochemistry, 40, 4722-4737.  
10975456 A.W.Munro, P.Taylor, and M.D.Walkinshaw (2000).
Structures of redox enzymes.
  Curr Opin Biotechnol, 11, 369-376.  
10769116 B.R.Crane, A.S.Arvai, S.Ghosh, E.D.Getzoff, D.J.Stuehr, and J.A.Tainer (2000).
Structures of the N(omega)-hydroxy-L-arginine complex of inducible nitric oxide synthase oxygenase dimer with active and inactive pterins.
  Biochemistry, 39, 4608-4621.
PDB codes: 1dwv 1dww 1dwx
10956005 C.Jung, D.J.Stuehr, and D.K.Ghosh (2000).
FT-Infrared spectroscopic studies of the iron ligand CO stretch mode of iNOS oxygenase domain: effect of arginine and tetrahydrobiopterin.
  Biochemistry, 39, 10163-10171.  
10944347 D.E.Danley, M.E.Haggan, D.Cunningham, K.F.Fennell, T.A.Pauly, and P.K.LeMotte (2000).
A crystallizable form of RIIbeta regulatory domain obtained by limited proteolysis.
  Acta Crystallogr D Biol Crystallogr, 56, 1038-1041.  
11106776 D.F.Lewis, and P.Hlavica (2000).
Interactions between redox partners in various cytochrome P450 systems: functional and structural aspects.
  Biochim Biophys Acta, 1460, 353-374.  
10677491 K.McMillan, M.Adler, D.S.Auld, J.J.Baldwin, E.Blasko, L.J.Browne, D.Chelsky, D.Davey, R.E.Dolle, K.A.Eagen, S.Erickson, R.I.Feldman, C.B.Glaser, C.Mallari, M.M.Morrissey, M.H.Ohlmeyer, G.Pan, J.F.Parkinson, G.B.Phillips, M.A.Polokoff, N.H.Sigal, R.Vergona, M.Whitlow, T.A.Young, and J.J.Devlin (2000).
Allosteric inhibitors of inducible nitric oxide synthase dimerization discovered via combinatorial chemistry.
  Proc Natl Acad Sci U S A, 97, 1506-1511.
PDB code: 1dd7
  10739241 W.Dall'Acqua, and P.Carter (2000).
Substrate-assisted catalysis: molecular basis and biological significance.
  Protein Sci, 9, 1-9.  
10331082 A.J.Hobbs, A.Higgs, and S.Moncada (1999).
Inhibition of nitric oxide synthase as a potential therapeutic target.
  Annu Rev Pharmacol Toxicol, 39, 191-220.  
10562539 B.R.Crane, R.J.Rosenfeld, A.S.Arvai, D.K.Ghosh, S.Ghosh, J.A.Tainer, D.J.Stuehr, and E.D.Getzoff (1999).
N-terminal domain swapping and metal ion binding in nitric oxide synthase dimerization.
  EMBO J, 18, 6271-6281.
PDB codes: 1df1 1qom
10353832 C.Tetreau, M.Tourbez, A.Gorren, B.Mayer, and D.Lavalette (1999).
Dynamics of carbon monoxide binding with neuronal nitric oxide synthase.
  Biochemistry, 38, 7210-7218.  
10320659 D.J.Stuehr (1999).
Mammalian nitric oxide synthases.
  Biochim Biophys Acta, 1411, 217-230.  
10562538 D.K.Ghosh, B.R.Crane, S.Ghosh, D.Wolan, R.Gachhui, C.Crooks, A.Presta, J.A.Tainer, E.D.Getzoff, and D.J.Stuehr (1999).
Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
  EMBO J, 18, 6260-6270.
PDB codes: 1dwv 1dww 1dwx
10052937 D.Shelver, M.V.Thorsteinsson, R.L.Kerby, S.Y.Chung, G.P.Roberts, M.F.Reynolds, R.B.Parks, and J.N.Burstyn (1999).
Identification of two important heme site residues (cysteine 75 and histidine 77) in CooA, the CO-sensing transcription factor of Rhodospirillum rubrum.
  Biochemistry, 38, 2669-2678.  
10359687 J.L.Pellequer, R.Brudler, and E.D.Getzoff (1999).
Biological sensors: More than one way to sense oxygen.
  Curr Biol, 9, R416-R418.  
10026272 L.Huang, H.M.Abu-Soud, R.Hille, and D.J.Stuehr (1999).
Nitric oxide-generated P420 nitric oxide synthase: characterization and roles for tetrahydrobiopterin and substrate in protecting against or reversing the P420 conversion.
  Biochemistry, 38, 1912-1920.  
10216152 M.H.Vos, and J.L.Martin (1999).
Femtosecond processes in proteins.
  Biochim Biophys Acta, 1411, 1.  
10360840 O.G.Hallmark, Y.T.Phung, and S.M.Black (1999).
Chimeric forms of neuronal nitric oxide synthase identify different regions of the reductase domain that are essential for dimerization and activity.
  DNA Cell Biol, 18, 397-407.  
10632779 P.Vallance, and A.Hingorani (1999).
Endothelial nitric oxide in humans in health and disease.
  Int J Exp Pathol, 80, 291-303.  
10547579 R.Gradini, M.Realacci, A.Ginepri, G.Naso, C.Santangelo, O.Cela, P.Sale, A.Berardi, E.Petrangeli, M.Gallucci, F.Di Silverio, and M.A.Russo (1999).
Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology.
  J Pathol, 189, 224-229.  
15992146 S.P.Fricker (1999).
Nitric oxide scavengers as a therapeutic approach to nitric oxide mediated disease.
  Expert Opin Investig Drugs, 8, 1209-1222.  
9671515 C.Moali, J.L.Boucher, M.A.Sari, D.J.Stuehr, and D.Mansuy (1998).
Substrate specificity of NO synthases: detailed comparison of L-arginine, homo-L-arginine, their N omega-hydroxy derivatives, and N omega-hydroxynor-L-arginine.
  Biochemistry, 37, 10453-10460.  
9875848 C.S.Raman, H.Li, P.Martásek, V.Král, B.S.Masters, and T.L.Poulos (1998).
Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center.
  Cell, 95, 939-950.
PDB codes: 1nse 2nse 3nse 4nse
9667929 D.S.Bohle (1998).
Pathophysiological chemistry of nitric oxide and its oxygenation by-products.
  Curr Opin Chem Biol, 2, 194-200.  
9521697 H.M.Abu-Soud, C.Wu, D.K.Ghosh, and D.J.Stuehr (1998).
Stopped-flow analysis of CO and NO binding to inducible nitric oxide synthase.
  Biochemistry, 37, 3777-3786.  
9736696 J.M.Perry, and M.A.Marletta (1998).
Effects of transition metals on nitric oxide synthase catalysis.
  Proc Natl Acad Sci U S A, 95, 11101-11106.  
9662510 J.M.Perry, N.Moon, Y.Zhao, W.R.Dunham, and M.A.Marletta (1998).
The high-potential flavin and heme of nitric oxide synthase are not magnetically linked: implications for electron transfer.
  Chem Biol, 5, 355-364.  
9860870 K.Brunner, A.Tortschanoff, B.Hemmens, P.J.Andrew, B.Mayer, and A.J.Kungl (1998).
Sensitivity of flavin fluorescence dynamics in neuronal nitric oxide synthase to cofactor-induced conformational changes and dimerization.
  Biochemistry, 37, 17545-17553.  
9818193 M.A.Marletta, A.R.Hurshman, and K.M.Rusche (1998).
Catalysis by nitric oxide synthase.
  Curr Opin Chem Biol, 2, 656-663.  
9636200 N.T.Eissa, J.W.Yuan, C.M.Haggerty, E.K.Choo, C.D.Palmer, and J.Moss (1998).
Cloning and characterization of human inducible nitric oxide synthase splice variants: a domain, encoded by exons 8 and 9, is critical for dimerization.
  Proc Natl Acad Sci U S A, 95, 7625-7630.  
9811486 R.Cortesi, P.Ascenzi, M.Colasanti, T.Persichini, G.Venturini, M.Bolognesi, A.Pesce, C.Nastruzzi, and E.Menegatti (1998).
Cross-enzyme inhibition by gabexate mesylate: formulation and reactivity study.
  J Pharm Sci, 87, 1335-1340.  
9663469 R.M.Clancy, A.R.Amin, and S.B.Abramson (1998).
The role of nitric oxide in inflammation and immunity.
  Arthritis Rheum, 41, 1141-1151.  
9551547 T.L.Poulos, C.S.Raman, and H.Li (1998).
NO news is good news.
  Structure, 6, 255-258.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer