spacer
spacer

PDBsum entry 1jzd

Go to PDB code: 
protein Protein-protein interface(s) links
Oxidoreductase PDB id
1jzd

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
219 a.a. *
118 a.a. *
Waters ×124
* Residue conservation analysis
PDB id:
1jzd
Name: Oxidoreductase
Title: Dsbc-dsbdalpha complex
Structure: Thiol:disulfide interchange protein dsbc. Chain: a, b. Fragment: dsbc + n-terminal 4 residues from his-tag. Engineered: yes. Mutation: yes. Thiol:disulfide interchange protein dsbd. Chain: c. Fragment: dsbdalpha. Synonym: c-type cytochrome biogenesis protein cycz, inner membrane
Source: Escherichia coli. Organism_taxid: 562. Gene: dsbc. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Gene: dsbd. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Trimer (from PQS)
Resolution:
2.30Å     R-factor:   0.234     R-free:   0.293
Authors: P.W.Haebel,D.Goldstone,F.Katzen,J.Beckwith,P.Metcalf
Key ref:
P.W.Haebel et al. (2002). The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex. EMBO J, 21, 4774-4784. PubMed id: 12234918 DOI: 10.1093/emboj/cdf489
Date:
15-Sep-01     Release date:   08-Mar-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P0AEG6  (DSBC_ECOLI) -  Thiol:disulfide interchange protein DsbC from Escherichia coli (strain K12)
Seq:
Struc:
236 a.a.
219 a.a.*
Protein chain
Pfam   ArchSchema ?
P36655  (DSBD_ECOLI) -  Thiol:disulfide interchange protein DsbD from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
565 a.a.
118 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chain C: E.C.1.8.1.8  - protein-disulfide reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. [protein]-dithiol + NAD+ = [protein]-disulfide + NADH + H+
2. [protein]-dithiol + NADP+ = [protein]-disulfide + NADPH + H+
[protein]-dithiol
+ NAD(+)
= [protein]-disulfide
+ NADH
+ H(+)
[protein]-dithiol
+ NADP(+)
= [protein]-disulfide
+ NADPH
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1093/emboj/cdf489 EMBO J 21:4774-4784 (2002)
PubMed id: 12234918  
 
 
The disulfide bond isomerase DsbC is activated by an immunoglobulin-fold thiol oxidoreductase: crystal structure of the DsbC-DsbDalpha complex.
P.W.Haebel, D.Goldstone, F.Katzen, J.Beckwith, P.Metcalf.
 
  ABSTRACT  
 
The Escherichia coli disulfide bond isomerase DsbC rearranges incorrect disulfide bonds during oxidative protein folding. It is specifically activated by the periplasmic N-terminal domain (DsbDalpha) of the transmembrane electron transporter DsbD. An intermediate of the electron transport reaction was trapped, yielding a covalent DsbC-DsbDalpha complex. The 2.3 A crystal structure of the complex shows for the first time the specific interactions between two thiol oxidoreductases. DsbDalpha is a novel thiol oxidoreductase with the active site cysteines embedded in an immunoglobulin fold. It binds into the central cleft of the V-shaped DsbC dimer, which assumes a closed conformation on complex formation. Comparison of the complex with oxidized DsbDalpha reveals major conformational changes in a cap structure that regulates the accessibility of the DsbDalpha active site. Our results explain how DsbC is selectively activated by DsbD using electrons derived from the cytoplasm.
 
  Selected figure(s)  
 
Figure 3.
Figure 3 Conformational changes during the thiol−disulfide exchange reaction between DsbC and DsbD . (A) Ribbon presentation of the DsbC dimer showing the open (white) and closed (blue and green) conformation of the molecule. In the open conformation, the sulfur atoms (yellow spheres) of the two DsbC active site Cys98 are 38 Šapart. DsbC assumes a closed conformation on binding to DsbD and the hinge movements observed in the DsbC linker helices result in the reduction of the distance between the active sites to 29 Šin the closed form. (B) Representation of the open (red) and shielded (white) form of the DsbD active site. In the open form observed in the DsbC−DsbD complex, the opening of the active site cap facilitates access to the DsbC binding pocket. In the shielded oxidized form of DsbD , the binding pocket is protected from the environment by Phe70, which makes close van der Waals interactions with the active site disulfide (yellow). Phe70 moves 13 Šfrom its position in oxidized DsbD .
Figure 4.
Figure 4 Interactions of the two DsbC active sites with DsbD residues. (A) Stereo diagram of the primary binding site showing the DsbC active site interacting with DsbD . The primary binding surface of DsbD is shown colored according to the calculated electrostatic potential using GRASP. Negative charges are colored red and positive charges are in blue. Important DsbC residues (Ile96−Leu104, Gly181−Val185) are shown in blue ball-and-stick and cartoon representation. DsbC residues are labeled in black and DsbD residues in green. DsbC Tyr100 binds into an uncharged pocket adjacent to the DsbD active site Cys109, which forms a disulfide bond with DsbC Cys98 and hydrogen bonds to the cis-proline loop, Thr182−Pro183. (B) Stereo diagram of the secondary binding site. The electrostatic surface of the DsbD secondary binding site is presented with DsbD residues labeled in green. The DsbC active region is shown in green ball-and-stick and ribbons representation with yellow labels. DsbD Asp21 interacts with the DsbC active site Cys98 and Gly99, while Tyr100 packs against DsbD Phe22.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2002, 21, 4774-4784) copyright 2002.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21241169 S.R.Shouldice, B.Heras, P.M.Walden, M.Totsika, M.A.Schembri, and J.L.Martin (2011).
Structure and function of DsbA, a key bacterial oxidative folding catalyst.
  Antioxid Redox Signal, 14, 1729-1760.  
20367276 H.Kadokura, and J.Beckwith (2010).
Mechanisms of oxidative protein folding in the bacterial cell envelope.
  Antioxid Redox Signal, 13, 1231-1246.  
20136512 J.F.Collet, and J.Messens (2010).
Structure, function, and mechanism of thioredoxin proteins.
  Antioxid Redox Signal, 13, 1205-1216.  
19634988 M.A.Wouters, S.W.Fan, and N.L.Haworth (2010).
Disulfides as redox switches: from molecular mechanisms to functional significance.
  Antioxid Redox Signal, 12, 53-91.  
19968787 S.R.Shouldice, S.H.Cho, D.Boyd, B.Heras, M.Eser, J.Beckwith, P.Riggs, J.L.Martin, and M.Berkmen (2010).
In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling.
  Mol Microbiol, 75, 13-28.
PDB codes: 3hxs 3hyp
19198617 B.Heras, S.R.Shouldice, M.Totsika, M.J.Scanlon, M.A.Schembri, and J.L.Martin (2009).
DSB proteins and bacterial pathogenicity.
  Nat Rev Microbiol, 7, 215-225.  
19004826 D.A.Mavridou, J.M.Stevens, A.D.Goddard, A.C.Willis, S.J.Ferguson, and C.Redfield (2009).
Control of Periplasmic Interdomain Thiol:Disulfide Exchange in the Transmembrane Oxidoreductase DsbD.
  J Biol Chem, 284, 3219-3226.  
19389711 J.J.Paxman, N.A.Borg, J.Horne, P.E.Thompson, Y.Chin, P.Sharma, J.S.Simpson, J.Wielens, S.Piek, C.M.Kahler, H.Sakellaris, M.Pearce, S.P.Bottomley, J.Rossjohn, and M.J.Scanlon (2009).
The structure of the bacterial oxidoreductase enzyme DsbA in complex with a peptide reveals a basis for substrate specificity in the catalytic cycle of DsbA enzymes.
  J Biol Chem, 284, 17835-17845.
PDB code: 3dks
19604482 M.Quinternet, P.Tsan, L.Selme-Roussel, C.Jacob, S.Boschi-Muller, G.Branlant, and M.T.Cung (2009).
Formation of the complex between DsbD and PilB N-terminal domains from Neisseria meningitidis necessitates an adaptability of nDsbD.
  Structure, 17, 1024-1033.
PDB code: 2k9f
19258316 S.H.Cho, and J.Beckwith (2009).
Two Snapshots of Electron Transport across the Membrane: INSIGHTS INTO THE STRUCTURE AND FUNCTION OF DsbD.
  J Biol Chem, 284, 11416-11424.  
19812042 T.J.Jönsson, L.C.Johnson, and W.T.Lowther (2009).
Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme.substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation.
  J Biol Chem, 284, 33305-33310.
PDB code: 3hy2
18819926 H.Shen, D.E.Walters, and D.M.Mueller (2008).
Introduction of the chloroplast redox regulatory region in the yeast ATP synthase impairs cytochrome C oxidase.
  J Biol Chem, 283, 32937-32943.  
18342631 S.Gleiter, and J.C.Bardwell (2008).
Disulfide bond isomerization in prokaryotes.
  Biochim Biophys Acta, 1783, 530-534.  
17609373 A.Hiniker, G.Ren, B.Heras, Y.Zheng, S.Laurinec, R.W.Jobson, J.A.Stuckey, J.L.Martin, and J.C.Bardwell (2007).
Laboratory evolution of one disulfide isomerase to resemble another.
  Proc Natl Acad Sci U S A, 104, 11670-11675.
PDB codes: 2h0g 2h0h 2h0i
17933514 B.Heras, M.Kurz, S.R.Shouldice, and J.L.Martin (2007).
The name's bond......disulfide bond.
  Curr Opin Struct Biol, 17, 691-698.  
17641688 S.H.Cho, A.Porat, J.Ye, and J.Beckwith (2007).
Redox-active cysteines of a membrane electron transporter DsbD show dual compartment accessibility.
  EMBO J, 26, 3509-3520.  
17372350 S.M.Yeh, N.Koon, C.Squire, and P.Metcalf (2007).
Structures of the dimerization domains of the Escherichia coli disulfide-bond isomerase enzymes DsbC and DsbG.
  Acta Crystallogr D Biol Crystallogr, 63, 465-471.
PDB codes: 2iy2 2iyj
17015672 A.Hiniker, D.Vertommen, J.C.Bardwell, and J.F.Collet (2006).
Evidence for conformational changes within DsbD: possible role for membrane-embedded proline residues.
  J Bacteriol, 188, 7317-7320.  
16815710 C.W.Gruber, M.Cemazar, B.Heras, J.L.Martin, and D.J.Craik (2006).
Protein disulfide isomerase: the structure of oxidative folding.
  Trends Biochem Sci, 31, 455-464.  
16446111 J.Messens, and J.F.Collet (2006).
Pathways of disulfide bond formation in Escherichia coli.
  Int J Biochem Cell Biol, 38, 1050-1062.  
17098195 K.Maeda, P.Hägglund, C.Finnie, B.Svensson, and A.Henriksen (2006).
Structural basis for target protein recognition by the protein disulfide reductase thioredoxin.
  Structure, 14, 1701-1710.
PDB code: 2iwt
16280324 L.Segatori, L.Murphy, S.Arredondo, H.Kadokura, H.Gilbert, J.Beckwith, and G.Georgiou (2006).
Conserved role of the linker alpha-helix of the bacterial disulfide isomerase DsbC in the avoidance of misoxidation by DsbB.
  J Biol Chem, 281, 4911-4919.  
17019698 N.Ouyang, Y.G.Gao, H.Y.Hu, and Z.X.Xia (2006).
Crystal structures of E. coli CcmG and its mutants reveal key roles of the N-terminal beta-sheet and the fingerprint region.
  Proteins, 65, 1021-1031.
PDB codes: 2b1k 2b1l 2g0f
16689797 P.Jurado, L.A.Fernández, and V.de Lorenzo (2006).
In vivo drafting of single-chain antibodies for regulatory duty on the sigma54-promoter Pu of the TOL plasmid.
  Mol Microbiol, 60, 1218-1227.  
17002656 V.M.Chen, and P.J.Hogg (2006).
Allosteric disulfide bonds in thrombosis and thrombolysis.
  J Thromb Haemost, 4, 2533-2541.  
15930008 C.S.Sevier, H.Kadokura, V.C.Tam, J.Beckwith, D.Fass, and C.A.Kaiser (2005).
The prokaryotic enzyme DsbB may share key structural features with eukaryotic disulfide bond forming oxidoreductases.
  Protein Sci, 14, 1630-1642.  
  16511006 D.Goldstone, E.N.Baker, and P.Metcalf (2005).
Crystallization and preliminary diffraction studies of the C-terminal domain of the DipZ homologue from Mycobacterium tuberculosis.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 243-245.  
15475357 M.van Lith, N.Hartigan, J.Hatch, and A.M.Benham (2005).
PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum.
  J Biol Chem, 280, 1376-1383.  
15057279 A.Rozhkova, C.U.Stirnimann, P.Frei, U.Grauschopf, R.Brunisholz, M.G.Grütter, G.Capitani, and R.Glockshuber (2004).
Structural basis and kinetics of inter- and intramolecular disulfide exchange in the redox catalyst DsbD.
  EMBO J, 23, 1709-1719.
PDB codes: 1se1 1vrs
15220477 L.Segatori, P.J.Paukstelis, H.F.Gilbert, and G.Georgiou (2004).
Engineered DsbC chimeras catalyze both protein oxidation and disulfide-bond isomerization in Escherichia coli: Reconciling two competing pathways.
  Proc Natl Acad Sci U S A, 101, 10018-10023.  
15333920 M.Zhang, A.F.Monzingo, L.Segatori, G.Georgiou, and J.D.Robertus (2004).
Structure of DsbC from Haemophilus influenzae.
  Acta Crystallogr D Biol Crystallogr, 60, 1512-1518.
PDB code: 1t3b
13678529 E.A.Kersteen, and R.T.Raines (2003).
Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics.
  Antioxid Redox Signal, 5, 413-424.  
12949080 F.Arnesano, L.Banci, M.Benvenuti, I.Bertini, V.Calderone, S.Mangani, and M.S.Viezzoli (2003).
The evolutionarily conserved trimeric structure of CutA1 proteins suggests a role in signal transduction.
  J Biol Chem, 278, 45999-46006.
PDB codes: 1naq 1osc
12925743 F.Katzen, and J.Beckwith (2003).
Role and location of the unusual redox-active cysteines in the hydrophobic domain of the transmembrane electron transporter DsbD.
  Proc Natl Acad Sci U S A, 100, 10471-10476.  
12524212 H.Kadokura, F.Katzen, and J.Beckwith (2003).
Protein disulfide bond formation in prokaryotes.
  Annu Rev Biochem, 72, 111-135.  
12626125 L.J.Matthias, and P.J.Hogg (2003).
Redox control on the cell surface: implications for HIV-1 entry.
  Antioxid Redox Signal, 5, 133-138.  
13678528 R.Ortenberg, and J.Beckwith (2003).
Functions of thiol-disulfide oxidoreductases in E. coli: redox myths, realities, and practicalities.
  Antioxid Redox Signal, 5, 403-411.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer