spacer
spacer

PDBsum entry 1js3

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Lyase PDB id
1js3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
464 a.a. *
Ligands
SO4 ×4
PLP-142 ×2
Waters ×455
* Residue conservation analysis
PDB id:
1js3
Name: Lyase
Title: Crystal structure of dopa decarboxylase in complex with the inhibitor carbidopa
Structure: Dopa decarboxylase. Chain: a, b. Synonym: aromatic-l-amino-acid decarboxylase. Ddc. Engineered: yes
Source: Sus scrofa. Pig. Organism_taxid: 9823. Organ: kidney. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PQS)
Resolution:
2.25Å     R-factor:   0.144     R-free:   0.187
Authors: P.Burkhard,P.Dominici,C.Borri-Voltattorni,J.N.Jansonius, V.N.Malashkevich
Key ref:
P.Burkhard et al. (2001). Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase. Nat Struct Biol, 8, 963-967. PubMed id: 11685243 DOI: 10.1038/nsb1101-963
Date:
16-Aug-01     Release date:   26-Oct-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P80041  (DDC_PIG) -  Aromatic-L-amino-acid decarboxylase from Sus scrofa
Seq:
Struc:
486 a.a.
464 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.4.1.1.28  - aromatic-L-amino-acid decarboxylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Dopa Biosynthesis
      Reaction:
1. L-dopa + H+ = dopamine + CO2
2. 5-hydroxy-L-tryptophan + H+ = serotonin + CO2
L-dopa
+ H(+)
Bound ligand (Het Group name = 142)
matches with 87.50% similarity
= dopamine
+ CO2
5-hydroxy-L-tryptophan
Bound ligand (Het Group name = 142)
matches with 68.42% similarity
+ H(+)
= serotonin
+ CO2
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Bound ligand (Het Group name = PLP) matches with 93.75% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1038/nsb1101-963 Nat Struct Biol 8:963-967 (2001)
PubMed id: 11685243  
 
 
Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase.
P.Burkhard, P.Dominici, C.Borri-Voltattorni, J.N.Jansonius, V.N.Malashkevich.
 
  ABSTRACT  
 
DOPA decarboxylase (DDC) is responsible for the synthesis of the key neurotransmitters dopamine and serotonin via decarboxylation of L-3,4-dihydroxyphenylalanine (L-DOPA) and L-5-hydroxytryptophan, respectively. DDC has been implicated in a number of clinic disorders, including Parkinson's disease and hypertension. Peripheral inhibitors of DDC are currently used to treat these diseases. We present the crystal structures of ligand-free DDC and its complex with the anti-Parkinson drug carbiDOPA. The inhibitor is bound to the enzyme by forming a hydrazone linkage with the cofactor, and its catechol ring is deeply buried in the active site cleft. The structures provide the molecular basis for the development of new inhibitors of DDC with better pharmacological characteristics.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Stereo view ribbon diagram of the polypeptide backbone of DDC. The view is directly down the two-fold symmetry axis. One monomer is completely red, whereas the other is green (N-terminal domain), cyan (large domain) and blue (small domain). The cofactors (PLP) and the inhibitors (carbiDOPA) are shown in ball-and-stick representation in yellow. The N-terminal domain of one monomer packs on top of the other monomer, resulting in an extended dimer interface. The picture was drawn with MOLSCRIPT50 and RASTER3D^51.
Figure 3.
Figure 3. Active site cleft of DDC in complex with carbiDOPA. a, Stereo view of the electron density of the inhibitor carbiDOPA. The difference electron density (|F[o]| - |F[c]| map with the inhibitor excluded from the phase calculation) in red, contoured at 4 , is superimposed onto the inhibitor model. Nitrogen, phosphate and oxygen atoms are marked blue, cyan and red, respectively. Carbon atoms are colored in yellow for the enzyme, in magenta for the PLP -carbiDOPA complex and in orange for the residues of the other monomer. Hydrogen bonds are indicated in green dotted lines. b, Detailed view of the hydrogen bond interactions, including all structural water molecules in the active site. Color code as in (a). c, A model of modified carbiDOPA with an additional 2' hydroxyl group (cyan). The newly established hydrogen bonds to the structural water molecules and the hydrazone nitrogen are indicated as dotted lines (cyan). Otherwise, the color code is as in (a). The picture was drawn with MOLSCRIPT50 and RASTER3D^51.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Struct Biol (2001, 8, 963-967) copyright 2001.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20673774 R.E.Hubbard (2011).
Structure-based drug discovery and protein targets in the CNS.
  Neuropharmacology, 60, 7.  
20098687 Q.Han, H.Ding, H.Robinson, B.M.Christensen, and J.Li (2010).
Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.
  PLoS One, 5, e8826.
PDB code: 3k40
20155936 X.Zhang, J.Y.Zhou, M.H.Chin, A.A.Schepmoes, V.A.Petyuk, K.K.Weitz, B.O.Petritis, M.E.Monroe, D.G.Camp, S.A.Wood, W.P.Melega, D.J.Bigelow, D.J.Smith, W.J.Qian, and R.D.Smith (2010).
Region-specific protein abundance changes in the brain of MPTP-induced Parkinson's disease mouse model.
  J Proteome Res, 9, 1496-1509.  
19938875 Y.L.Lin, and J.Gao (2010).
Internal proton transfer in the external pyridoxal 5'-phosphate Schiff base in dopa decarboxylase.
  Biochemistry, 49, 84-94.  
18987999 K.E.Fujimori (2009).
Characterization of the Regulatory Region of the Dopa Decarboxylase Gene in Medaka: An in vivo Green Fluorescent Protein Reporter Assay Combined with a Simple TA-Cloning Method.
  Mol Biotechnol, 41, 224-235.  
18942733 L.R.Hofto, C.E.Lee, and M.Cafiero (2009).
The importance of aromatic-type interactions in serotonin synthesis: protein-ligand interactions in tryptophan hydroxylase and aromatic amino acid decarboxylase.
  J Comput Chem, 30, 1111-1115.  
19343288 M.Wiltgen, and G.P.Tilz (2009).
Homology modelling: a review about the method on hand of the diabetic antigen GAD 65 structure prediction.
  Wien Med Wochenschr, 159, 112-125.  
18310073 A.A.Moya-García, J.Ruiz-Pernía, S.Martí, F.Sánchez-Jiménez, and I.Tuñón (2008).
Analysis of the decarboxylation step in mammalian histidine decarboxylase. A computational study.
  J Biol Chem, 283, 12393-12401.  
18487605 D.Mukhopadhyay, K.S.Howell, H.Riezman, and G.Capitani (2008).
Identifying key residues of sphinganine-1-phosphate lyase for function in vivo and in vitro.
  J Biol Chem, 283, 20159-20169.  
17384644 G.Fenalti, R.H.Law, A.M.Buckle, C.Langendorf, K.Tuck, C.J.Rosado, N.G.Faux, K.Mahmood, C.S.Hampe, J.P.Banga, M.Wilce, J.Schmidberger, J.Rossjohn, O.El-Kabbani, R.N.Pike, A.I.Smith, I.R.Mackay, M.J.Rowley, and J.C.Whisstock (2007).
GABA production by glutamic acid decarboxylase is regulated by a dynamic catalytic loop.
  Nat Struct Mol Biol, 14, 280-286.
PDB codes: 2okj 2okk
16895983 J.E.Ippolito, M.E.Merritt, F.Bäckhed, K.L.Moulder, S.Mennerick, J.K.Manchester, S.T.Gammon, D.Piwnica-Worms, and J.I.Gordon (2006).
Linkage between cellular communications, energy utilization, and proliferation in metastatic neuroendocrine cancers.
  Proc Natl Acad Sci U S A, 103, 12505-12510.  
16954186 J.Stetefeld, M.Jenny, and P.Burkhard (2006).
Intersubunit signaling in glutamate-1-semialdehyde-aminomutase.
  Proc Natl Acad Sci U S A, 103, 13688-13693.
PDB codes: 2hoy 2hoz 2hp1 2hp2
16724525 M.Gütschow, and M.Meusel (2006).
[Enzyme inhibitors in Parkinson treatment]
  Pharm Unserer Zeit, 35, 218-225.  
15612036 A.A.Moya-Garcia, M.A.Medina, and F.Sánchez-Jiménez (2005).
Mammalian histidine decarboxylase: from structure to function.
  Bioessays, 27, 57-63.  
15690345 G.Capitani, D.De Biase, H.Gut, S.Ahmed, and M.G.Grütter (2005).
Structural model of human GAD65: prediction and interpretation of biochemical and immunogenic features.
  Proteins, 59, 7.  
15836621 J.Wei, and J.Y.Wu (2005).
Structural and functional analysis of cysteine residues in human glutamate decarboxylase 65 (GAD65) and GAD67.
  J Neurochem, 93, 624-633.  
16364195 M.A.Medina, F.Correa-Fiz, C.Rodríguez-Caso, and F.Sánchez-Jiménez (2005).
A comprehensive view of polyamine and histamine metabolism to the light of new technologies.
  J Cell Mol Med, 9, 854-864.  
15848803 M.J.Alkema, M.Hunter-Ensor, N.Ringstad, and H.R.Horvitz (2005).
Tyramine Functions independently of octopamine in the Caenorhabditis elegans nervous system.
  Neuron, 46, 247-260.  
15791207 T.Nakai, N.Nakagawa, N.Maoka, R.Masui, S.Kuramitsu, and N.Kamiya (2005).
Structure of P-protein of the glycine cleavage system: implications for nonketotic hyperglycinemia.
  EMBO J, 24, 1523-1536.
PDB codes: 1wyt 1wyu 1wyv
15498941 A.Paiardini, F.Bossa, and S.Pascarella (2004).
Evolutionarily conserved regions and hydrophobic contacts at the superfamily level: The case of the fold-type I, pyridoxal-5'-phosphate-dependent enzymes.
  Protein Sci, 13, 2992-3005.  
15287963 E.E.Hare, and C.M.Loer (2004).
Function and evolution of the serotonin-synthetic bas-1 gene and other aromatic amino acid decarboxylase genes in Caenorhabditis.
  BMC Evol Biol, 4, 24.  
14622303 C.Rodríguez-Caso, D.Rodríguez-Agudo, A.A.Moya-García, I.Fajardo, M.A.Medina, V.Subramaniam, and F.Sánchez-Jiménez (2003).
Local changes in the catalytic site of mammalian histidine decarboxylase can affect its global conformation and stability.
  Eur J Biochem, 270, 4376-4387.  
12912902 G.Capitani, D.De Biase, C.Aurizi, H.Gut, F.Bossa, and M.G.Grütter (2003).
Crystal structure and functional analysis of Escherichia coli glutamate decarboxylase.
  EMBO J, 22, 4027-4037.
PDB codes: 1pmm 1pmo
12119022 C.G.Cheong, J.C.Escalante-Semerena, and I.Rayment (2002).
Structural studies of the L-threonine-O-3-phosphate decarboxylase (CobD) enzyme from Salmonella enterica: the apo, substrate, and product-aldimine complexes.
  Biochemistry, 41, 9079-9089.
PDB codes: 1l4n 1l5f 1l5k 1l5l 1l5m 1l5n 1lc5 1lc7 1lc8
12118007 M.Bertoldi, M.Gonsalvi, R.Contestabile, and C.B.Voltattorni (2002).
Mutation of tyrosine 332 to phenylalanine converts dopa decarboxylase into a decarboxylation-dependent oxidative deaminase.
  J Biol Chem, 277, 36357-36362.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer