spacer
spacer

PDBsum entry 1a59

Go to PDB code: 
protein ligands links
Cold-activity PDB id
1a59

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
377 a.a. *
Ligands
COA
CIT
* Residue conservation analysis
PDB id:
1a59
Name: Cold-activity
Title: Cold-active citrate synthase
Structure: Citrate synthase. Chain: a. Engineered: yes
Source: Antarctic bacterium ds2-3r. Organism_taxid: 56673. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Dimer (from PDB file)
Resolution:
2.09Å     R-factor:   0.184     R-free:   0.236
Authors: R.J.M.Russell,U.Gerike,M.J.Danson,D.W.Hough,G.L.Taylor
Key ref:
R.J.Russell et al. (1998). Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium. Structure, 6, 351-361. PubMed id: 9551556 DOI: 10.1016/S0969-2126(98)00037-9
Date:
20-Feb-98     Release date:   30-Mar-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O34002  (PRPC_ABDS2) -  2-methylcitrate synthase from Antarctic bacterium DS2-3R
Seq:
Struc:
379 a.a.
377 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.2.3.3.16  - citrate synthase (unknown stereospecificity).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: oxaloacetate + acetyl-CoA + H2O = citrate + CoA + H+
oxaloacetate
+ acetyl-CoA
+ H2O
=
citrate
Bound ligand (Het Group name = CIT)
corresponds exactly
+
CoA
Bound ligand (Het Group name = COA)
matches with 95.83% similarity
+ H(+)
   Enzyme class 2: E.C.2.3.3.5  - 2-methylcitrate synthase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
      Reaction: propanoyl-CoA + oxaloacetate + H2O = (2S,3S)-2-methylcitrate + CoA + H+
propanoyl-CoA
+
oxaloacetate
Bound ligand (Het Group name = CIT)
matches with 69.23% similarity
+ H2O
= (2S,3S)-2-methylcitrate
+
CoA
Bound ligand (Het Group name = COA)
matches with 95.83% similarity
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/S0969-2126(98)00037-9 Structure 6:351-361 (1998)
PubMed id: 9551556  
 
 
Structural adaptations of the cold-active citrate synthase from an Antarctic bacterium.
R.J.Russell, U.Gerike, M.J.Danson, D.W.Hough, G.L.Taylor.
 
  ABSTRACT  
 
BACKGROUND: The structural basis of adaptation of enzymes to low temperature is poorly understood. Dimeric citrate synthase has been used as a model enzyme to study the structural basis of thermostability, the structure of the enzyme from organisms living in habitats at 55 degrees C and 100 degrees C having previously been determined. Here the study is extended to include a citrate synthase from an Antarctic bacterium, allowing us to explore the structural basis of cold activity and thermostability across the whole temperature range over which life is known to exit. RESULTS: We report here the first crystal structure of a cold-active enzyme, citrate synthase, isolated from an Antarctic bacterium, at a resolution of 2.09 A. In comparison with the same enzyme from a hyperthermophilic host, the cold-active enzyme has a much more accessible active site, an unusual electrostatic potential distribution and an increased relative flexibility of the small domain compared to the large domain. Several other features of the cold-active enzyme were also identified: reduced subunit interface interactions with no intersubunit ion-pair networks; loops of increased length carrying more charge and fewer proline residues; an increase in solvent-exposed hydrophobic residues; and an increase in intramolecular ion pairs. CONCLUSIONS: Enzymes from organisms living at the temperature extremes of life need to avoid hot or cold denaturation yet maintain sufficient structural integrity to allow catalytic efficiency. For hyperthermophiles, thermal denaturation of the citrate synthase dimer appears to be resisted by complex networks of ion pairs at the dimer interface, a feature common to other hyperthermophilic proteins. For the cold-active citrate synthase, cold denaturation appears to be resisted by an increase in intramolecular ion pairs compared to the hyperthermophilic enzyme. Catalytic efficiency of the cold-active enzyme appears to be achieved by a more accessible active site and by an increase in the relative flexibility of the small domain compared to the large domain.
 
  Selected figure(s)  
 
Figure 3.
 
  The above figure is reprinted by permission from Cell Press: Structure (1998, 6, 351-361) copyright 1998.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20970504 S.Chittori, H.S.Savithri, and M.R.Murthy (2011).
Crystal structure of Salmonella typhimurium 2-methylcitrate synthase: Insights on domain movement and substrate specificity.
  J Struct Biol, 174, 58-68.
PDB code: 3o8j
19763902 O.Prakash, and N.Jaiswal (2010).
alpha-Amylase: an ideal representative of thermostable enzymes.
  Appl Biochem Biotechnol, 160, 2401-2414.  
20726028 R.M.Evans, E.M.Behiry, L.H.Tey, J.Guo, E.J.Loveridge, and R.K.Allemann (2010).
Catalysis by dihydrofolate reductase from the psychropiezophile Moritella profunda.
  Chembiochem, 11, 2010-2017.  
19181663 B.B.Xie, F.Bian, X.L.Chen, H.L.He, J.Guo, X.Gao, Y.X.Zeng, B.Chen, B.C.Zhou, and Y.Z.Zhang (2009).
Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.
  J Biol Chem, 284, 9257-9269.  
19879144 Y.T.Aminetzach, J.R.Srouji, C.Y.Kong, and H.E.Hoekstra (2009).
Convergent evolution of novel protein function in shrew and lizard venom.
  Curr Biol, 19, 1925-1931.  
18539590 C.Bauvois, L.Jacquamet, A.L.Huston, F.Borel, G.Feller, and J.L.Ferrer (2008).
Crystal structure of the cold-active aminopeptidase from Colwellia psychrerythraea, a close structural homologue of the human bifunctional leukotriene A4 hydrolase.
  J Biol Chem, 283, 23315-23325.
PDB code: 3cia
18203855 D.F.Rodrigues, and J.M.Tiedje (2008).
Coping with our cold planet.
  Appl Environ Microbiol, 74, 1677-1686.  
18196298 M.Olufsen, A.O.Smalås, and B.O.Brandsdal (2008).
Electrostatic interactions play an essential role in DNA repair and cold-adaptation of Uracil DNA glycosylase.
  J Mol Model, 14, 201-213.  
18004790 M.Olufsen, E.Papaleo, A.O.Smalås, and B.O.Brandsdal (2008).
Ion pairs and their role in modulating stability of cold- and warm-active uracil DNA glycosylase.
  Proteins, 71, 1219-1230.  
18759222 W.C.Too, Y.C.Liew, and L.L.Few (2008).
Cloning of glyceraldehyde-3-phosphate dehydrogenase from an Antarctic psychrophilic bacterium by inverse and splinkerette PCR.
  J Basic Microbiol, 48, 430-435.  
17395198 D.R.Boutz, D.Cascio, J.Whitelegge, L.J.Perry, and T.O.Yeates (2007).
Discovery of a thermophilic protein complex stabilized by topologically interlinked chains.
  J Mol Biol, 368, 1332-1344.
PDB code: 2ibp
17697122 D.Tronelli, E.Maugini, F.Bossa, and S.Pascarella (2007).
Structural adaptation to low temperatures--analysis of the subunit interface of oligomeric psychrophilic enzymes.
  FEBS J, 274, 4595-4608.  
17242507 E.K.Riise, M.S.Lorentzen, R.Helland, A.O.Smalås, H.K.Leiros, and N.P.Willassen (2007).
The first structure of a cold-active catalase from Vibrio salmonicida at 1.96 A reveals structural aspects of cold adaptation.
  Acta Crystallogr D Biol Crystallogr, 63, 135-148.
PDB code: 2isa
17328767 F.Hårdeman, and S.Sjöling (2007).
Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment.
  FEMS Microbiol Ecol, 59, 524-534.  
17567742 G.S.Garvey, C.J.Rocco, J.C.Escalante-Semerena, and I.Rayment (2007).
The three-dimensional crystal structure of the PrpF protein of Shewanella oneidensis complexed with trans-aconitate: insights into its biological function.
  Protein Sci, 16, 1274-1284.
PDB codes: 2pvz 2pw0
17235516 V.Spiwok, P.Lipovová, T.Skálová, J.Dusková, J.Dohnálek, J.Hasek, N.J.Russell, and B.Králová (2007).
Cold-active enzymes studied by comparative molecular dynamics simulation.
  J Mol Model, 13, 485-497.  
16736094 J.A.Coker, and J.E.Brenchley (2006).
Protein engineering of a cold-active beta-galactosidase from Arthrobacter sp. SB to increase lactose hydrolysis reveals new sites affecting low temperature activity.
  Extremophiles, 10, 515-524.  
16756497 K.S.Siddiqui, and R.Cavicchioli (2006).
Cold-adapted enzymes.
  Annu Rev Biochem, 75, 403-433.  
16294337 O.A.Adekoya, R.Helland, N.P.Willassen, and I.Sylte (2006).
Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.
  Proteins, 62, 435-449.  
15526298 A.Seto, K.Murayama, M.Toyama, A.Ebihara, N.Nakagawa, S.Kuramitsu, M.Shirouzu, and S.Yokoyama (2005).
ATP-induced structural change of dephosphocoenzyme A kinase from Thermus thermophilus HB8.
  Proteins, 58, 235-242.
PDB code: 1uf9
  16511027 D.Dong, T.Ihara, H.Motoshima, and K.Watanabe (2005).
Crystallization and preliminary X-ray crystallographic studies of a psychrophilic subtilisin-like protease Apa1 from Antarctic Pseudoalteromonas sp. strain AS-11.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 61, 308-311.  
15670163 J.Arnórsdóttir, M.M.Kristjánsson, and R.Ficner (2005).
Crystal structure of a subtilisin-like serine proteinase from a psychrotrophic Vibrio species reveals structural aspects of cold adaptation.
  FEBS J, 272, 832-845.
PDB codes: 1s2n 1sh7
15749696 M.Olufsen, A.O.Smalås, E.Moe, and B.O.Brandsdal (2005).
Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase.
  J Biol Chem, 280, 18042-18048.  
  16233714 A.Hoyoux, V.Blaise, T.Collins, S.D'Amico, E.Gratia, A.L.Huston, J.C.Marx, G.Sonan, Y.Zeng, G.Feller, and C.Gerday (2004).
Extreme catalysts from low-temperature environments.
  J Biosci Bioeng, 98, 317-330.  
14975528 D.Georlette, V.Blaise, T.Collins, S.D'Amico, E.Gratia, A.Hoyoux, J.C.Marx, G.Sonan, G.Feller, and C.Gerday (2004).
Some like it cold: biocatalysis at low temperatures.
  FEMS Microbiol Rev, 28, 25-42.  
14981312 H.Tsuruta, J.Tamura, H.Yamagata, and Y.Aizono (2004).
Specification of amino acid residues essential for the catalytic reaction of cold-active protein-tyrosine phosphatase of a psychrophile, Shewanella sp.
  Biosci Biotechnol Biochem, 68, 440-443.  
14997520 S.Kumar, and R.Nussinov (2004).
Different roles of electrostatics in heat and in cold: adaptation by citrate synthase.
  Chembiochem, 5, 280-290.  
12475991 F.Van Petegem, T.Collins, M.A.Meuwis, C.Gerday, G.Feller, and J.Van Beeumen (2003).
The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site.
  J Biol Chem, 278, 7531-7539.
PDB codes: 1h12 1h13 1h14
15035024 G.Feller, and C.Gerday (2003).
Psychrophilic enzymes: hot topics in cold adaptation.
  Nat Rev Microbiol, 1, 200-208.  
12876336 I.Leiros, E.Moe, O.Lanes, A.O.Smalås, and N.P.Willassen (2003).
The structure of uracil-DNA glycosylase from Atlantic cod (Gadus morhua) reveals cold-adaptation features.
  Acta Crystallogr D Biol Crystallogr, 59, 1357-1365.
PDB code: 1okb
12577270 N.Aghajari, F.Van Petegem, V.Villeret, J.P.Chessa, C.Gerday, R.Haser, and J.Van Beeumen (2003).
Crystal structures of a psychrophilic metalloprotease reveal new insights into catalysis by cold-adapted proteases.
  Proteins, 50, 636-647.
PDB codes: 1g9k 1h71
12839772 T.Brautaset, M.D.Williams, R.D.Dillingham, C.Kaufmann, A.Bennaars, E.Crabbe, and M.C.Flickinger (2003).
Role of the Bacillus methanolicus citrate synthase II gene, citY, in regulating the secretion of glutamate in L-lysine-secreting mutants.
  Appl Environ Microbiol, 69, 3986-3995.  
11933070 G.Gianese, F.Bossa, and S.Pascarella (2002).
Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes.
  Proteins, 47, 236-249.  
  11781170 G.Ko, M.W.First, and H.A.Burge (2002).
The characterization of upper-room ultraviolet germicidal irradiation in inactivating airborne microorganisms.
  Environ Health Perspect, 110, 95.  
12473121 G.S.Bell, R.J.Russell, H.Connaris, D.W.Hough, M.J.Danson, and G.L.Taylor (2002).
Stepwise adaptations of citrate synthase to survival at life's extremes. From psychrophile to hyperthermophile.
  Eur J Biochem, 269, 6250-6260.
PDB code: 1o7x
12423352 J.Arnórsdottir, R.B.Smáradóttir, O.T.Magnússon, S.H.Thorbjarnardóttir, G.Eggertsson, and M.M.Kristjánsson (2002).
Characterization of a cloned subtilisin-like serine proteinase from a psychrotrophic Vibrio species.
  Eur J Biochem, 269, 5536-5546.  
12171655 S.D'Amico, P.Claverie, T.Collins, D.Georlette, E.Gratia, A.Hoyoux, M.A.Meuwis, G.Feller, and C.Gerday (2002).
Molecular basis of cold adaptation.
  Philos Trans R Soc Lond B Biol Sci, 357, 917-925.  
11166567 F.H.Arnold, P.L.Wintrode, K.Miyazaki, and A.Gershenson (2001).
How enzymes adapt: lessons from directed evolution.
  Trends Biochem Sci, 26, 100-106.  
11589698 I.Tsigos, K.Mavromatis, M.Tzanodaskalaki, C.Pozidis, M.Kokkinidis, and V.Bouriotis (2001).
Engineering the properties of a cold active enzyme through rational redesign of the active site.
  Eur J Biochem, 268, 5074-5080.  
11160110 T.Lonhienne, K.Mavromatis, C.E.Vorgias, L.Buchon, C.Gerday, and V.Bouriotis (2001).
Cloning, sequences, and characterization of two chitinase genes from the Antarctic Arthrobacter sp. strain TAD20: isolation and partial characterization of the enzymes.
  J Bacteriol, 183, 1773-1779.  
11135190 W.Dzwolak, M.Kato, A.Shimizu, and Y.Taniguchi (2001).
FTIR study on heat-induced and pressure-assisted cold-induced changes in structure of bovine alpha-lactalbumin: stabilizing role of calcium ion.
  Biopolymers, 62, 29-39.  
10675897 C.Gerday, M.Aittaleb, M.Bentahir, J.P.Chessa, P.Claverie, T.Collins, S.D'Amico, J.Dumont, G.Garsoux, D.Georlette, A.Hoyoux, T.Lonhienne, M.A.Meuwis, and G.Feller (2000).
Cold-adapted enzymes: from fundamentals to biotechnology.
  Trends Biotechnol, 18, 103-107.  
10848966 D.Georlette, Z.O.Jónsson, F.Van Petegem, J.Chessa, J.Van Beeumen, U.Hübscher, and C.Gerday (2000).
A DNA ligase from the psychrophile Pseudoalteromonas haloplanktis gives insights into the adaptation of proteins to low temperatures.
  Eur J Biochem, 267, 3502-3512.  
10672012 H.K.Leiros, N.P.Willassen, and A.O.Smalås (2000).
Structural comparison of psychrophilic and mesophilic trypsins. Elucidating the molecular basis of cold-adaptation.
  Eur J Biochem, 267, 1039-1049.  
10694395 L.C.Kurz, G.Drysdale, M.Riley, M.A.Tomar, J.Chen, R.J.Russell, and M.J.Danson (2000).
Kinetics and mechanism of the citrate synthase from the thermophilic archaeon Thermoplasma acidophilum.
  Biochemistry, 39, 2283-2296.  
10672035 M.Rina, C.Pozidis, K.Mavromatis, M.Tzanodaskalaki, M.Kokkinidis, and V.Bouriotis (2000).
Alkaline phosphatase from the Antarctic strain TAB5. Properties and psychrophilic adaptations.
  Eur J Biochem, 267, 1230-1238.  
11087953 N.Panasik, J.E.Brenchley, and G.K.Farber (2000).
Distributions of structural features contributing to thermostability in mesophilic and thermophilic alpha/beta barrel glycosyl hydrolases.
  Biochim Biophys Acta, 1543, 189-201.  
11087936 T.Lonhienne, C.Gerday, and G.Feller (2000).
Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility.
  Biochim Biophys Acta, 1543, 1.  
  11064190 Y.Okubo, K.Yokoigawa, N.Esaki, K.Soda, and H.Misono (2000).
High catalytic activity of alanine racemase from psychrophilic Bacillus psychrosaccharolyticus at high temperatures in the presence of pyridoxal 5'-phosphate.
  FEMS Microbiol Lett, 192, 169-173.  
  10338022 A.Ayed, and H.W.Duckworth (1999).
A stable intermediate in the equilibrium unfolding of Escherichia coli citrate synthase.
  Protein Sci, 8, 1116-1126.  
  10473410 A.Galkin, L.Kulakova, H.Ashida, Y.Sawa, and N.Esaki (1999).
Cold-adapted alanine dehydrogenases from two antarctic bacterial strains: gene cloning, protein characterization, and comparison with mesophilic and thermophilic counterparts.
  Appl Environ Microbiol, 65, 4014-4020.  
10591103 D.Maes, J.P.Zeelen, N.Thanki, N.Beaucamp, M.Alvarez, M.H.Thi, J.Backmann, J.A.Martial, L.Wyns, R.Jaenicke, and R.K.Wierenga (1999).
The crystal structure of triosephosphate isomerase (TIM) from Thermotoga maritima: a comparative thermostability structural analysis of ten different TIM structures.
  Proteins, 37, 441-453.
PDB code: 1b9b
10021406 D.W.Hough, and M.J.Danson (1999).
Extremozymes.
  Curr Opin Chem Biol, 3, 39-46.  
10206992 S.Y.Kim, K.Y.Hwang, S.H.Kim, H.C.Sung, Y.S.Han, and Y.Cho (1999).
Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum.
  J Biol Chem, 274, 11761-11767.
PDB codes: 1b8p 1b8u 1b8v
9746940 M.J.Danson, and D.W.Hough (1998).
Structure, function and stability of enzymes from the Archaea.
  Trends Microbiol, 6, 307-314.  
9862804 N.Aghajari, G.Feller, C.Gerday, and R.Haser (1998).
Structures of the psychrophilic Alteromonas haloplanctis alpha-amylase give insights into cold adaptation at a molecular level.
  Structure, 6, 1503-1516.
PDB code: 1b0i
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer