 |
PDBsum entry 1gzm
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Signaling protein
|
PDB id
|
|
|
|
1gzm
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
J Mol Biol
343:1409-1438
(2004)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of bovine rhodopsin in a trigonal crystal form.
|
|
J.Li,
P.C.Edwards,
M.Burghammer,
C.Villa,
G.F.Schertler.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We have determined the structure of bovine rhodopsin at 2.65 A resolution using
untwinned native crystals in the space group P3(1), by molecular replacement
from the 2.8 A model (1F88) solved in space group P4(1). The new structure
reveals mechanistically important details unresolved previously, which are
considered in the membrane context by docking the structure into a cryo-electron
microscopy map of 2D crystals. Kinks in the transmembrane helices facilitate
inter-helical polar interactions. Ordered water molecules extend the hydrogen
bonding networks, linking Trp265 in the retinal binding pocket to the NPxxY
motif near the cytoplasmic boundary, and the Glu113 counterion for the
protonated Schiff base to the extracellular surface. Glu113 forms a complex with
a water molecule hydrogen bonded between its main chain and side-chain oxygen
atoms. This can be expected to stabilise the salt-bridge with the protonated
Schiff base linking the 11-cis-retinal to Lys296. The cytoplasmic ends of
helices H5 and H6 have been extended by one turn. The G-protein interaction
sites mapped to the cytoplasmic ends of H5 and H6 and a spiral extension of H5
are elevated above the bilayer. There is a surface cavity next to the conserved
Glu134-Arg135 ion pair. The cytoplasmic loops have the highest temperature
factors in the structure, indicative of their flexibility when not interacting
with G protein or regulatory proteins. An ordered detergent molecule is seen
wrapped around the kink in H6, stabilising the structure around the potential
hinge in H6. These findings provide further explanation for the stability of the
dark state structure. They support a mechanism for the activation, initiated by
photo-isomerisation of the chromophore to its all-trans form, that involves
pivoting movements of kinked helices, which, while maintaining hydrophobic
contacts in the membrane interior, can be coupled to amplified translation of
the helix ends near the membrane surfaces.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 5.
Figure 5. A transmembrane slice showing H-bonding networks
and hydrophobic contacts between the retinal-binding pocket and
the cytoplasmic surface.
|
 |
Figure 6.
Figure 6. Environment of the 11-cis-retinal. (a)
Environment of the protonated Schiff base and its counterion
Glu113. (b) Environment of the ionone ring and the kinks in H6
and H7 cross-linked by a water molecule.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Elsevier:
J Mol Biol
(2004,
343,
1409-1438)
copyright 2004.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
A.J.Venkatakrishnan,
X.Deupi,
G.Lebon,
C.G.Tate,
G.F.Schertler,
and
M.M.Babu
(2013).
Molecular signatures of G-protein-coupled receptors.
|
| |
Nature,
494,
185-194.
|
 |
|
|
|
|
 |
J.F.White,
N.Noinaj,
Y.Shibata,
J.Love,
B.Kloss,
F.Xu,
J.Gvozdenovic-Jeremic,
P.Shah,
J.Shiloach,
C.G.Tate,
and
R.Grisshammer
(2012).
Structure of the agonist-bound neurotensin receptor.
|
| |
Nature,
490,
508-513.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
L.Davis,
and
J.W.Chin
(2012).
Designer proteins: applications of genetic code expansion in cell biology.
|
| |
Nat Rev Mol Cell Biol,
13,
168-182.
|
 |
|
|
|
|
 |
A.Grossfield
(2011).
Recent progress in the study of G protein-coupled receptors with molecular dynamics computer simulations.
|
| |
Biochim Biophys Acta,
1808,
1868-1878.
|
 |
|
|
|
|
 |
B.K.Kobilka
(2011).
Structural insights into adrenergic receptor function and pharmacology.
|
| |
Trends Pharmacol Sci,
32,
213-218.
|
 |
|
|
|
|
 |
D.M.Rosenbaum,
C.Zhang,
J.A.Lyons,
R.Holl,
D.Aragao,
D.H.Arlow,
S.G.Rasmussen,
H.J.Choi,
B.T.Devree,
R.K.Sunahara,
P.S.Chae,
S.H.Gellman,
R.O.Dror,
D.E.Shaw,
W.I.Weis,
M.Caffrey,
P.Gmeiner,
and
B.K.Kobilka
(2011).
Structure and function of an irreversible agonist-β(2) adrenoceptor complex.
|
| |
Nature,
469,
236-240.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Lebon,
T.Warne,
P.C.Edwards,
K.Bennett,
C.J.Langmead,
A.G.Leslie,
and
C.G.Tate
(2011).
Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation.
|
| |
Nature,
474,
521-525.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
H.W.Choe,
J.H.Park,
Y.J.Kim,
and
O.P.Ernst
(2011).
Transmembrane signaling by GPCRs: insight from rhodopsin and opsin structures.
|
| |
Neuropharmacology,
60,
52-57.
|
 |
|
|
|
|
 |
H.W.Choe,
Y.J.Kim,
J.H.Park,
T.Morizumi,
E.F.Pai,
N.Krauss,
K.P.Hofmann,
P.Scheerer,
and
O.P.Ernst
(2011).
Crystal structure of metarhodopsin II.
|
| |
Nature,
471,
651-655.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.Standfuss,
P.C.Edwards,
A.D'Antona,
M.Fransen,
G.Xie,
D.D.Oprian,
and
G.F.Schertler
(2011).
The structural basis of agonist-induced activation in constitutively active rhodopsin.
|
| |
Nature,
471,
656-660.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Angelova,
A.Felline,
M.Lee,
M.Patel,
D.Puett,
and
F.Fanelli
(2011).
Conserved amino acids participate in the structure networks deputed to intramolecular communication in the lutropin receptor.
|
| |
Cell Mol Life Sci,
68,
1227-1239.
|
 |
|
|
|
|
 |
R.Stadel,
K.H.Ahn,
and
D.A.Kendall
(2011).
The cannabinoid type-1 receptor carboxyl-terminus, more than just a tail.
|
| |
J Neurochem,
117,
1.
|
 |
|
|
|
|
 |
S.G.Rasmussen,
H.J.Choi,
J.J.Fung,
E.Pardon,
P.Casarosa,
P.S.Chae,
B.T.Devree,
D.M.Rosenbaum,
F.S.Thian,
T.S.Kobilka,
A.Schnapp,
I.Konetzki,
R.K.Sunahara,
S.H.Gellman,
A.Pautsch,
J.Steyaert,
W.I.Weis,
and
B.K.Kobilka
(2011).
Structure of a nanobody-stabilized active state of the β(2) adrenoceptor.
|
| |
Nature,
469,
175-180.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.D.Mumford,
B.B.Dawood,
M.E.Daly,
S.L.Murden,
M.D.Williams,
M.B.Protty,
J.C.Spalton,
M.Wheatley,
S.J.Mundell,
and
S.P.Watson
(2010).
A novel thromboxane A2 receptor D304N variant that abrogates ligand binding in a patient with a bleeding diathesis.
|
| |
Blood,
115,
363-369.
|
 |
|
|
|
|
 |
A.Wuster,
A.J.Venkatakrishnan,
G.F.Schertler,
and
M.M.Babu
(2010).
Spial: analysis of subtype-specific features in multiple sequence alignments of proteins.
|
| |
Bioinformatics,
26,
2906-2907.
|
 |
|
|
|
|
 |
A.Zohar,
N.Dekel,
B.Rubinsky,
and
H.Parnas
(2010).
New mechanism for voltage induced charge movement revealed in GPCRs--theory and experiments.
|
| |
PLoS One,
5,
e8752.
|
 |
|
|
|
|
 |
B.Holst,
R.Nygaard,
L.Valentin-Hansen,
A.Bach,
M.S.Engelstoft,
P.S.Petersen,
T.M.Frimurer,
and
T.W.Schwartz
(2010).
A conserved aromatic lock for the tryptophan rotameric switch in TM-VI of seven-transmembrane receptors.
|
| |
J Biol Chem,
285,
3973-3985.
|
 |
|
|
|
|
 |
C.Hoffmann
(2010).
G protein-coupled receptor activation: amino acid movements caught infra-red-handed.
|
| |
Chembiochem,
11,
2247-2249.
|
 |
|
|
|
|
 |
C.J.Illingworth,
P.D.Scott,
K.E.Parkes,
C.R.Snell,
M.P.Campbell,
and
C.A.Reynolds
(2010).
Connectivity and binding-site recognition: applications relevant to drug design.
|
| |
J Comput Chem,
31,
2677-2688.
|
 |
|
|
|
|
 |
D.N.Langelaan,
and
J.K.Rainey
(2010).
Membrane catalysis of peptide-receptor binding.
|
| |
Biochem Cell Biol,
88,
203-210.
|
 |
|
|
|
|
 |
E.Zaitseva,
M.F.Brown,
and
R.Vogel
(2010).
Sequential rearrangement of interhelical networks upon rhodopsin activation in membranes: the Meta II(a) conformational substate.
|
| |
J Am Chem Soc,
132,
4815-4821.
|
 |
|
|
|
|
 |
H.Cangul,
N.V.Morgan,
J.R.Forman,
H.Saglam,
Z.Aycan,
T.Yakut,
T.Gulten,
O.Tarim,
E.Bober,
Y.Cesur,
G.A.Kirby,
S.Pasha,
M.Karkucak,
E.Eren,
S.Cetinkaya,
V.Bas,
K.Demir,
S.A.Yuca,
E.Meyer,
M.Kendall,
W.Hogler,
T.G.Barrett,
and
E.R.Maher
(2010).
Novel TSHR mutations in consanguineous families with congenital nongoitrous hypothyroidism.
|
| |
Clin Endocrinol (Oxf),
73,
671-677.
|
 |
|
|
|
|
 |
H.Tsukamoto,
and
A.Terakita
(2010).
Diversity and functional properties of bistable pigments.
|
| |
Photochem Photobiol Sci,
9,
1435-1443.
|
 |
|
|
|
|
 |
H.Tsukamoto,
A.Terakita,
and
Y.Shichida
(2010).
A pivot between helices V and VI near the retinal-binding site is necessary for activation in rhodopsins.
|
| |
J Biol Chem,
285,
7351-7357.
|
 |
|
|
|
|
 |
J.A.Goncalves,
S.Ahuja,
S.Erfani,
M.Eilers,
and
S.O.Smith
(2010).
Structure and function of G protein-coupled receptors using NMR spectroscopy.
|
| |
Prog Nucl Magn Reson Spectrosc,
57,
159-180.
|
 |
|
|
|
|
 |
J.J.Tesmer
(2010).
The quest to understand heterotrimeric G protein signaling.
|
| |
Nat Struct Mol Biol,
17,
650-652.
|
 |
|
|
|
|
 |
J.M.Holton,
and
K.A.Frankel
(2010).
The minimum crystal size needed for a complete diffraction data set.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
393-408.
|
 |
|
|
|
|
 |
J.Y.Shim
(2010).
Understanding functional residues of the cannabinoid CB1.
|
| |
Curr Top Med Chem,
10,
779-798.
|
 |
|
|
|
|
 |
K.McLuskey,
A.W.Roszak,
Y.Zhu,
and
N.W.Isaacs
(2010).
Crystal structures of all-alpha type membrane proteins.
|
| |
Eur Biophys J,
39,
723-755.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
K.Sakai,
Y.Imamoto,
T.Yamashita,
and
Y.Shichida
(2010).
Functional analysis of the second extracellular loop of rhodopsin by characterizing split variants.
|
| |
Photochem Photobiol Sci,
9,
1490-1497.
|
 |
|
|
|
|
 |
M.Filizola
(2010).
Increasingly accurate dynamic molecular models of G-protein coupled receptor oligomers: Panacea or Pandora's box for novel drug discovery?
|
| |
Life Sci,
86,
590-597.
|
 |
|
|
|
|
 |
M.M.Bonde,
J.T.Hansen,
S.J.Sanni,
S.Haunsø,
S.Gammeltoft,
C.Lyngsø,
and
J.L.Hansen
(2010).
Biased signaling of the angiotensin II type 1 receptor can be mediated through distinct mechanisms.
|
| |
PLoS One,
5,
e14135.
|
 |
|
|
|
|
 |
M.M.Rosenkilde,
T.Benned-Jensen,
T.M.Frimurer,
and
T.W.Schwartz
(2010).
The minor binding pocket: a major player in 7TM receptor activation.
|
| |
Trends Pharmacol Sci,
31,
567-574.
|
 |
|
|
|
|
 |
M.Michino,
J.Chen,
R.C.Stevens,
and
C.L.Brooks
(2010).
FoldGPCR: structure prediction protocol for the transmembrane domain of G protein-coupled receptors from class A.
|
| |
Proteins,
78,
2189-2201.
|
 |
|
|
|
|
 |
M.Miyano,
H.Ago,
H.Saino,
T.Hori,
and
K.Ida
(2010).
Internally bridging water molecule in transmembrane alpha-helical kink.
|
| |
Curr Opin Struct Biol,
20,
456-463.
|
 |
|
|
|
|
 |
S.Bhattacharya,
G.Subramanian,
S.Hall,
J.Lin,
A.Laoui,
and
N.Vaidehi
(2010).
Allosteric antagonist binding sites in class B GPCRs: corticotropin receptor 1.
|
| |
J Comput Aided Mol Des,
24,
659-674.
|
 |
|
|
|
|
 |
S.Durdagi,
M.G.Papadopoulos,
P.G.Zoumpoulakis,
C.Koukoulitsa,
and
T.Mavromoustakos
(2010).
A computational study on cannabinoid receptors and potent bioactive cannabinoid ligands: homology modeling, docking, de novo drug design and molecular dynamics analysis.
|
| |
Mol Divers,
14,
257-276.
|
 |
|
|
|
|
 |
S.O.Smith
(2010).
Structure and activation of the visual pigment rhodopsin.
|
| |
Annu Rev Biophys,
39,
309-328.
|
 |
|
|
|
|
 |
S.Ye,
E.Zaitseva,
G.Caltabiano,
G.F.Schertler,
T.P.Sakmar,
X.Deupi,
and
R.Vogel
(2010).
Tracking G-protein-coupled receptor activation using genetically encoded infrared probes.
|
| |
Nature,
464,
1386-1389.
|
 |
|
|
|
|
 |
V.Hornak,
S.Ahuja,
M.Eilers,
J.A.Goncalves,
M.Sheves,
P.J.Reeves,
and
S.O.Smith
(2010).
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints.
|
| |
J Mol Biol,
396,
510-527.
|
 |
|
|
|
|
 |
V.V.Gurevich,
and
E.V.Gurevich
(2010).
Custom-designed proteins as novel therapeutic tools? The case of arrestins.
|
| |
Expert Rev Mol Med,
12,
e13.
|
 |
|
|
|
|
 |
X.Deupi,
and
B.K.Kobilka
(2010).
Energy landscapes as a tool to integrate GPCR structure, dynamics, and function.
|
| |
Physiology (Bethesda),
25,
293-303.
|
 |
|
|
|
|
 |
X.Zhang,
E.Y.Chien,
M.J.Chalmers,
B.D.Pascal,
J.Gatchalian,
R.C.Stevens,
and
P.R.Griffin
(2010).
Dynamics of the beta2-adrenergic G-protein coupled receptor revealed by hydrogen-deuterium exchange.
|
| |
Anal Chem,
82,
1100-1108.
|
 |
|
|
|
|
 |
Y.Chen,
Y.Wu,
P.Henklein,
X.Li,
K.P.Hofmann,
K.Nakanishi,
and
O.P.Ernst
(2010).
A photo-cross-linking strategy to map sites of protein-protein interactions.
|
| |
Chemistry,
16,
7389-7394.
|
 |
|
|
|
|
 |
A.C.Howlett,
A.J.Gray,
J.M.Hunter,
and
B.M.Willardson
(2009).
Role of Molecular Chaperones in G Protein {beta}5/Regulator of G Protein Signaling Dimer Assembly and G Protein {beta}{gamma} Dimer Specificity.
|
| |
J Biol Chem,
284,
16386-16399.
|
 |
|
|
|
|
 |
A.Martin,
M.Damian,
M.Laguerre,
J.Parello,
B.Pucci,
L.Serre,
S.Mary,
J.Marie,
and
J.L.Banères
(2009).
Engineering a G protein-coupled receptor for structural studies: stabilization of the BLT1 receptor ground state.
|
| |
Protein Sci,
18,
727-734.
|
 |
|
|
|
|
 |
A.Oberai,
N.H.Joh,
F.K.Pettit,
and
J.U.Bowie
(2009).
Structural imperatives impose diverse evolutionary constraints on helical membrane proteins.
|
| |
Proc Natl Acad Sci U S A,
106,
17747-17750.
|
 |
|
|
|
|
 |
C.Monnier,
C.Dodé,
L.Fabre,
L.Teixeira,
G.Labesse,
J.P.Pin,
J.P.Hardelin,
and
P.Rondard
(2009).
PROKR2 missense mutations associated with Kallmann syndrome impair receptor signalling activity.
|
| |
Hum Mol Genet,
18,
75-81.
|
 |
|
|
|
|
 |
D.F.Cummings,
S.S.Ericksen,
and
J.A.Schetz
(2009).
Three amino acids in the D2 dopamine receptor regulate selective ligand function and affinity.
|
| |
J Neurochem,
110,
45-57.
|
 |
|
|
|
|
 |
D.M.Rosenbaum,
S.G.Rasmussen,
and
B.K.Kobilka
(2009).
The structure and function of G-protein-coupled receptors.
|
| |
Nature,
459,
356-363.
|
 |
|
|
|
|
 |
D.Mustafi,
and
K.Palczewski
(2009).
Topology of class A G protein-coupled receptors: insights gained from crystal structures of rhodopsins, adrenergic and adenosine receptors.
|
| |
Mol Pharmacol,
75,
1.
|
 |
|
|
|
|
 |
D.T.Lodowski,
and
K.Palczewski
(2009).
Chemokine receptors and other G protein-coupled receptors.
|
| |
Curr Opin HIV AIDS,
4,
88-95.
|
 |
|
|
|
|
 |
D.T.Lodowski,
T.E.Angel,
and
K.Palczewski
(2009).
Comparative Analysis of GPCR Crystal Structures.
|
| |
Photochem Photobiol,
85,
425-430.
|
 |
|
|
|
|
 |
D.Toledo,
A.Cordomí,
M.G.Proietti,
M.Benfatto,
L.J.Del Valle,
J.J.Pérez,
P.Garriga,
and
F.Sepulcre
(2009).
Structural Characterization of a Zinc High-affinity Binding Site in Rhodopsin.
|
| |
Photochem Photobiol,
85,
479-484.
|
 |
|
|
|
|
 |
E.Ramon,
X.Mao,
and
K.D.Ridge
(2009).
Studies on the stability of the human cone visual pigments.
|
| |
Photochem Photobiol,
85,
509-516.
|
 |
|
|
|
|
 |
H.Tsukamoto,
D.L.Farrens,
M.Koyanagi,
and
A.Terakita
(2009).
The magnitude of the light-induced conformational change in different rhodopsins correlates with their ability to activate G proteins.
|
| |
J Biol Chem,
284,
20676-20683.
|
 |
|
|
|
|
 |
I.Domazet,
S.S.Martin,
B.J.Holleran,
M.E.Morin,
P.Lacasse,
P.Lavigne,
E.Escher,
R.Leduc,
and
G.Guillemette
(2009).
The fifth transmembrane domain of angiotensin II Type 1 receptor participates in the formation of the ligand-binding pocket and undergoes a counterclockwise rotation upon receptor activation.
|
| |
J Biol Chem,
284,
31953-31961.
|
 |
|
|
|
|
 |
I.G.Tikhonova,
and
S.Costanzi
(2009).
Unraveling the structure and function of G protein-coupled receptors through NMR spectroscopy.
|
| |
Curr Pharm Des,
15,
4003-4016.
|
 |
|
|
|
|
 |
J.C.Mobarec,
R.Sanchez,
and
M.Filizola
(2009).
Modern homology modeling of G-protein coupled receptors: which structural template to use?
|
| |
J Med Chem,
52,
5207-5216.
|
 |
|
|
|
|
 |
J.Devillé,
J.Rey,
and
M.Chabbert
(2009).
An indel in transmembrane helix 2 helps to trace the molecular evolution of class A G-protein-coupled receptors.
|
| |
J Mol Evol,
68,
475-489.
|
 |
|
|
|
|
 |
J.Lättig,
A.Oksche,
M.Beyermann,
W.Rosenthal,
and
G.Krause
(2009).
Structural determinants for selective recognition of peptide ligands for endothelin receptor subtypes ETA and ETB.
|
| |
J Pept Sci,
15,
479-491.
|
 |
|
|
|
|
 |
J.Liu,
M.Y.Liu,
J.B.Nguyen,
A.Bhagat,
V.Mooney,
and
E.C.Yan
(2009).
Thermal decay of rhodopsin: role of hydrogen bonds in thermal isomerization of 11-cis retinal in the binding site and hydrolysis of protonated Schiff base.
|
| |
J Am Chem Soc,
131,
8750-8751.
|
 |
|
|
|
|
 |
J.M.Holton
(2009).
A beginner's guide to radiation damage.
|
| |
J Synchrotron Radiat,
16,
133-142.
|
 |
|
|
|
|
 |
K.P.Hofmann,
P.Scheerer,
P.W.Hildebrand,
H.W.Choe,
J.H.Park,
M.Heck,
and
O.P.Ernst
(2009).
A G protein-coupled receptor at work: the rhodopsin model.
|
| |
Trends Biochem Sci,
34,
540-552.
|
 |
|
|
|
|
 |
M.A.Hanson,
and
R.C.Stevens
(2009).
Discovery of new GPCR biology: one receptor structure at a time.
|
| |
Structure,
17,
8.
|
 |
|
|
|
|
 |
M.B.Morris,
S.Dastmalchi,
and
W.B.Church
(2009).
Rhodopsin: structure, signal transduction and oligomerisation.
|
| |
Int J Biochem Cell Biol,
41,
721-724.
|
 |
|
|
|
|
 |
M.F.Brown,
K.Martínez-Mayorga,
K.Nakanishi,
G.F.Salgado,
and
A.V.Struts
(2009).
Retinal Conformation and Dynamics in Activation of Rhodopsin Illuminated by Solid-state H NMR Spectroscopy.
|
| |
Photochem Photobiol,
85,
442-453.
|
 |
|
|
|
|
 |
M.Peterschmitt,
F.Grain,
B.Arnaud,
G.Deléage,
and
V.Lambert
(2009).
Mutation in the melanocortin 1 receptor is associated with amber colour in the Norwegian Forest Cat.
|
| |
Anim Genet,
40,
547-552.
|
 |
|
|
|
|
 |
O.Yuzlenko,
and
K.Kieć-Kononowicz
(2009).
Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies.
|
| |
J Comput Chem,
30,
14-32.
|
 |
|
|
|
|
 |
P.W.Hildebrand,
P.Scheerer,
J.H.Park,
H.W.Choe,
R.Piechnick,
O.P.Ernst,
K.P.Hofmann,
and
M.Heck
(2009).
A ligand channel through the G protein coupled receptor opsin.
|
| |
PLoS ONE,
4,
e4382.
|
 |
|
|
|
|
 |
R.M.Dores
(2009).
Adrenocorticotropic hormone, melanocyte-stimulating hormone, and the melanocortin receptors: revisiting the work of Robert Schwyzer: a thirty-year retrospective.
|
| |
Ann N Y Acad Sci,
1163,
93.
|
 |
|
|
|
|
 |
R.Nygaard,
T.M.Frimurer,
B.Holst,
M.M.Rosenkilde,
and
T.W.Schwartz
(2009).
Ligand binding and micro-switches in 7TM receptor structures.
|
| |
Trends Pharmacol Sci,
30,
249-259.
|
 |
|
|
|
|
 |
R.O.Dror,
D.H.Arlow,
D.W.Borhani,
M.Ã.˜.Jensen,
S.Piana,
and
D.E.Shaw
(2009).
Identification of two distinct inactive conformations of the beta2-adrenergic receptor reconciles structural and biochemical observations.
|
| |
Proc Natl Acad Sci U S A,
106,
4689-4694.
|
 |
|
|
|
|
 |
S.Ahuja,
M.Eilers,
A.Hirshfeld,
E.C.Yan,
M.Ziliox,
T.P.Sakmar,
M.Sheves,
and
S.O.Smith
(2009).
6-s-cis Conformation and polar binding pocket of the retinal chromophore in the photoactivated state of rhodopsin.
|
| |
J Am Chem Soc,
131,
15160-15169.
|
 |
|
|
|
|
 |
S.Ahuja,
V.Hornak,
E.C.Yan,
N.Syrett,
J.A.Goncalves,
A.Hirshfeld,
M.Ziliox,
T.P.Sakmar,
M.Sheves,
P.J.Reeves,
S.O.Smith,
and
M.Eilers
(2009).
Helix movement is coupled to displacement of the second extracellular loop in rhodopsin activation.
|
| |
Nat Struct Mol Biol,
16,
168-175.
|
 |
|
|
|
|
 |
S.Costanzi,
J.Siegel,
I.G.Tikhonova,
and
K.A.Jacobson
(2009).
Rhodopsin and the others: a historical perspective on structural studies of G protein-coupled receptors.
|
| |
Curr Pharm Des,
15,
3994-4002.
|
 |
|
|
|
|
 |
S.F.Marino
(2009).
High-level production and characterization of a G-protein coupled receptor signaling complex.
|
| |
FEBS J,
276,
4515-4528.
|
 |
|
|
|
|
 |
S.Lüdeke,
M.Mahalingam,
and
R.Vogel
(2009).
Rhodopsin activation switches in a native membrane environment.
|
| |
Photochem Photobiol,
85,
437-441.
|
 |
|
|
|
|
 |
S.Lindert,
R.Staritzbichler,
N.Wötzel,
M.KarakaÅŸ,
P.L.Stewart,
and
J.Meiler
(2009).
EM-fold: De novo folding of alpha-helical proteins guided by intermediate-resolution electron microscopy density maps.
|
| |
Structure,
17,
990.
|
 |
|
|
|
|
 |
S.Madathil,
and
K.Fahmy
(2009).
Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors.
|
| |
J Biol Chem,
284,
28801-28809.
|
 |
|
|
|
|
 |
S.S.Ericksen,
D.F.Cummings,
H.Weinstein,
and
J.A.Schetz
(2009).
Ligand selectivity of D2 dopamine receptors is modulated by changes in local dynamics produced by sodium binding.
|
| |
J Pharmacol Exp Ther,
328,
40-54.
|
 |
|
|
|
|
 |
S.Ye,
T.Huber,
R.Vogel,
and
T.P.Sakmar
(2009).
FTIR analysis of GPCR activation using azido probes.
|
| |
Nat Chem Biol,
5,
397-399.
|
 |
|
|
|
|
 |
T.E.Angel,
M.R.Chance,
and
K.Palczewski
(2009).
Conserved waters mediate structural and functional activation of family A (rhodopsin-like) G protein-coupled receptors.
|
| |
Proc Natl Acad Sci U S A,
106,
8555-8560.
|
 |
|
|
|
|
 |
T.E.Angel,
S.Gupta,
B.Jastrzebska,
K.Palczewski,
and
M.R.Chance
(2009).
Structural waters define a functional channel mediating activation of the GPCR, rhodopsin.
|
| |
Proc Natl Acad Sci U S A,
106,
14367-14372.
|
 |
|
|
|
|
 |
V.Zobnina,
and
I.Roterman
(2009).
Application of the fuzzy-oil-drop model to membrane protein simulation.
|
| |
Proteins,
77,
378-394.
|
 |
|
|
|
|
 |
X.J.Yao,
G.Vélez Ruiz,
M.R.Whorton,
S.G.Rasmussen,
B.T.DeVree,
X.Deupi,
R.K.Sunahara,
and
B.Kobilka
(2009).
The effect of ligand efficacy on the formation and stability of a GPCR-G protein complex.
|
| |
Proc Natl Acad Sci U S A,
106,
9501-9506.
|
 |
|
|
|
|
 |
Y.Shibata,
J.F.White,
M.J.Serrano-Vega,
F.Magnani,
A.L.Aloia,
R.Grisshammer,
and
C.G.Tate
(2009).
Thermostabilization of the neurotensin receptor NTS1.
|
| |
J Mol Biol,
390,
262-277.
|
 |
|
|
|
|
 |
A.L.Parrill
(2008).
Lysophospholipid interactions with protein targets.
|
| |
Biochim Biophys Acta,
1781,
540-546.
|
 |
|
|
|
|
 |
A.Martinelli,
and
T.Tuccinardi
(2008).
Molecular modeling of adenosine receptors: new results and trends.
|
| |
Med Res Rev,
28,
247-277.
|
 |
|
|
|
|
 |
A.Parent,
G.Laroche,
E.Hamelin,
and
J.L.Parent
(2008).
RACK1 regulates the cell surface expression of the G protein-coupled receptor for thromboxane A(2).
|
| |
Traffic,
9,
394-407.
|
 |
|
|
|
|
 |
B.Knierim,
K.P.Hofmann,
W.Gärtner,
W.L.Hubbell,
and
O.P.Ernst
(2008).
Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors.
|
| |
J Biol Chem,
283,
4967-4974.
|
 |
|
|
|
|
 |
B.L.Cook,
K.E.Ernberg,
H.Chung,
and
S.Zhang
(2008).
Study of a synthetic human olfactory receptor 17-4: expression and purification from an inducible mammalian cell line.
|
| |
PLoS ONE,
3,
e2920.
|
 |
|
|
|
|
 |
C.Altenbach,
A.K.Kusnetzow,
O.P.Ernst,
K.P.Hofmann,
and
W.L.Hubbell
(2008).
High-resolution distance mapping in rhodopsin reveals the pattern of helix movement due to activation.
|
| |
Proc Natl Acad Sci U S A,
105,
7439-7444.
|
 |
|
|
|
|
 |
C.de Graaf,
N.Foata,
O.Engkvist,
and
D.Rognan
(2008).
Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening.
|
| |
Proteins,
71,
599-620.
|
 |
|
|
|
|
 |
D.Bandyopadhyay,
and
E.L.Mehler
(2008).
Quantitative expression of protein heterogeneity: Response of amino acid side chains to their local environment.
|
| |
Proteins,
72,
646-659.
|
 |
|
|
|
|
 |
F.Deflorian,
S.Engel,
A.O.Colson,
B.M.Raaka,
M.C.Gershengorn,
and
S.Costanzi
(2008).
Understanding the structural and functional differences between mouse thyrotropin-releasing hormone receptors 1 and 2.
|
| |
Proteins,
71,
783-794.
|
 |
|
|
|
|
 |
F.Magnani,
Y.Shibata,
M.J.Serrano-Vega,
and
C.G.Tate
(2008).
Co-evolving stability and conformational homogeneity of the human adenosine A2a receptor.
|
| |
Proc Natl Acad Sci U S A,
105,
10744-10749.
|
 |
|
|
|
|
 |
F.Mancia,
Z.Assur,
A.G.Herman,
R.Siegel,
and
W.A.Hendrickson
(2008).
Ligand sensitivity in dimeric associations of the serotonin 5HT2c receptor.
|
| |
EMBO Rep,
9,
363-369.
|
 |
|
|
|
|
 |
G.F.Schertler
(2008).
Signal transduction: the rhodopsin story continued.
|
| |
Nature,
453,
292-293.
|
 |
|
|
|
|
 |
I.G.Tikhonova,
R.B.Best,
S.Engel,
M.C.Gershengorn,
G.Hummer,
and
S.Costanzi
(2008).
Atomistic insights into rhodopsin activation from a dynamic model.
|
| |
J Am Chem Soc,
130,
10141-10149.
|
 |
|
|
|
|
 |
J.C.Mobarec,
and
M.Filizola
(2008).
Advances in the Development and Application of Computational Methodologies for Structural Modeling of G-Protein Coupled Receptors.
|
| |
Expert Opin Drug Discov,
3,
343-355.
|
 |
|
|
|
|
 |
J.González-Maeso,
R.L.Ang,
T.Yuen,
P.Chan,
N.V.Weisstaub,
J.F.López-Giménez,
M.Zhou,
Y.Okawa,
L.F.Callado,
G.Milligan,
J.A.Gingrich,
M.Filizola,
J.J.Meana,
and
S.C.Sealfon
(2008).
Identification of a serotonin/glutamate receptor complex implicated in psychosis.
|
| |
Nature,
452,
93-97.
|
 |
|
|
|
|
 |
J.H.Park,
P.Scheerer,
K.P.Hofmann,
H.W.Choe,
and
O.P.Ernst
(2008).
Crystal structure of the ligand-free G-protein-coupled receptor opsin.
|
| |
Nature,
454,
183-187.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Standfuss,
E.Zaitseva,
M.Mahalingam,
and
R.Vogel
(2008).
Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
|
| |
J Mol Biol,
380,
145-157.
|
 |
|
|
|
|
 |
J.Thomas,
N.Ramakrishnan,
and
C.Bailey-Kellogg
(2008).
Graphical models of residue coupling in protein families.
|
| |
IEEE/ACM Trans Comput Biol Bioinform,
5,
183-197.
|
 |
|
|
|
|
 |
J.Wu,
M.Feng,
and
K.H.Ruan
(2008).
Assembling NMR structures for the intracellular loops of the human thromboxane A2 receptor: implication of the G protein-coupling pocket.
|
| |
Arch Biochem Biophys,
470,
73-82.
|
 |
|
|
|
|
 |
M.J.Serrano-Vega,
F.Magnani,
Y.Shibata,
and
C.G.Tate
(2008).
Conformational thermostabilization of the {beta}1-adrenergic receptor in a detergent-resistant form.
|
| |
Proc Natl Acad Sci U S A,
105,
877-882.
|
 |
|
|
|
|
 |
M.M.Rosenkilde,
M.J.Smit,
and
M.Waldhoer
(2008).
Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors.
|
| |
Br J Pharmacol,
153,
S154-S166.
|
 |
|
|
|
|
 |
M.Mahalingam,
K.Martínez-Mayorga,
M.F.Brown,
and
R.Vogel
(2008).
Two protonation switches control rhodopsin activation in membranes.
|
| |
Proc Natl Acad Sci U S A,
105,
17795-17800.
|
 |
|
|
|
|
 |
M.Murakami,
and
T.Kouyama
(2008).
Crystal structure of squid rhodopsin.
|
| |
Nature,
453,
363-367.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Simonović,
and
T.A.Steitz
(2008).
Cross-crystal averaging reveals that the structure of the peptidyl-transferase center is the same in the 70S ribosome and the 50S subunit.
|
| |
Proc Natl Acad Sci U S A,
105,
500-505.
|
 |
|
|
|
|
 |
N.Huynh,
B.Mallik,
L.Zhang,
M.Martins-Green,
and
D.Morikis
(2008).
Computational studies of CXCR1, the receptor of IL-8/CXCL8, using molecular dynamics and electrostatics.
|
| |
Biopolymers,
89,
52-61.
|
 |
|
|
|
|
 |
O.Soubias,
S.L.Niu,
D.C.Mitchell,
and
K.Gawrisch
(2008).
Lipid-rhodopsin hydrophobic mismatch alters rhodopsin helical content.
|
| |
J Am Chem Soc,
130,
12465-12471.
|
 |
|
|
|
|
 |
P.S.Park,
D.T.Lodowski,
and
K.Palczewski
(2008).
Activation of g protein-coupled receptors: beyond two-state models and tertiary conformational changes.
|
| |
Annu Rev Pharmacol Toxicol,
48,
107-141.
|
 |
|
|
|
|
 |
P.Scheerer,
J.H.Park,
P.W.Hildebrand,
Y.J.Kim,
N.Krauss,
H.W.Choe,
K.P.Hofmann,
and
O.P.Ernst
(2008).
Crystal structure of opsin in its G-protein-interacting conformation.
|
| |
Nature,
455,
497-502.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Balu,
H.Zhang,
E.Zukowski,
J.Y.Chen,
A.G.Markelz,
and
S.K.Gregurick
(2008).
Terahertz spectroscopy of bacteriorhodopsin and rhodopsin: similarities and differences.
|
| |
Biophys J,
94,
3217-3226.
|
 |
|
|
|
|
 |
R.E.Stenkamp
(2008).
Alternative models for two crystal structures of bovine rhodopsin.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
902-904.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Moukhametzianov,
M.Burghammer,
P.C.Edwards,
S.Petitdemange,
D.Popov,
M.Fransen,
G.McMullan,
G.F.Schertler,
and
C.Riekel
(2008).
Protein crystallography with a micrometre-sized synchrotron-radiation beam.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
158-166.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.Sanishvili,
V.Nagarajan,
D.Yoder,
M.Becker,
S.Xu,
S.Corcoran,
D.L.Akey,
J.L.Smith,
and
R.F.Fischetti
(2008).
A 7 microm mini-beam improves diffraction data from small or imperfect crystals of macromolecules.
|
| |
Acta Crystallogr D Biol Crystallogr,
64,
425-435.
|
 |
|
|
|
|
 |
S.Costanzi
(2008).
On the applicability of GPCR homology models to computer-aided drug discovery: a comparison between in silico and crystal structures of the beta2-adrenergic receptor.
|
| |
J Med Chem,
51,
2907-2914.
|
 |
|
|
|
|
 |
S.R.McAllister,
and
C.A.Floudas
(2008).
Alpha-helical topology prediction and generation of distance restraints in membrane proteins.
|
| |
Biophys J,
95,
5281-5295.
|
 |
|
|
|
|
 |
T.G.Wensel
(2008).
Signal transducing membrane complexes of photoreceptor outer segments.
|
| |
Vision Res,
48,
2052-2061.
|
 |
|
|
|
|
 |
T.Warne,
M.J.Serrano-Vega,
J.G.Baker,
R.Moukhametzianov,
P.C.Edwards,
R.Henderson,
A.G.Leslie,
C.G.Tate,
and
G.F.Schertler
(2008).
Structure of a beta1-adrenergic G-protein-coupled receptor.
|
| |
Nature,
454,
486-491.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.V.Gurevich,
and
E.V.Gurevich
(2008).
GPCR monomers and oligomers: it takes all kinds.
|
| |
Trends Neurosci,
31,
74-81.
|
 |
|
|
|
|
 |
V.V.Gurevich,
and
E.V.Gurevich
(2008).
How and why do GPCRs dimerize?
|
| |
Trends Pharmacol Sci,
29,
234-240.
|
 |
|
|
|
|
 |
W.I.Weis,
and
B.K.Kobilka
(2008).
Structural insights into G-protein-coupled receptor activation.
|
| |
Curr Opin Struct Biol,
18,
734-740.
|
 |
|
|
|
|
 |
W.M.Oldham,
and
H.E.Hamm
(2008).
Heterotrimeric G protein activation by G-protein-coupled receptors.
|
| |
Nat Rev Mol Cell Biol,
9,
60-71.
|
 |
|
|
|
|
 |
Y.Chen,
R.Herrmann,
N.Fishkin,
P.Henklein,
K.Nakanishi,
and
O.P.Ernst
(2008).
Synthesis and spectroscopic characterization of photo-affinity peptide ligands to study rhodopsin-G protein interaction.
|
| |
Photochem Photobiol,
84,
831-838.
|
 |
|
|
|
|
 |
Y.Mo,
B.K.Lee,
J.F.Ankner,
J.M.Becker,
and
W.T.Heller
(2008).
Detergent-associated solution conformations of helical and beta-barrel membrane proteins.
|
| |
J Phys Chem B,
112,
13349-13354.
|
 |
|
|
|
|
 |
Y.Wang,
P.H.Bovee-Geurts,
J.Lugtenburg,
and
W.J.DeGrip
(2008).
Alpha-retinals as rhodopsin chromophores--preference for the 9-Z configuration and partial agonist activity.
|
| |
Photochem Photobiol,
84,
889-894.
|
 |
|
|
|
|
 |
A.Cordomí,
O.Edholm,
and
J.J.Perez
(2007).
Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer.
|
| |
J Comput Chem,
28,
1017-1030.
|
 |
|
|
|
|
 |
A.Grossfield,
S.E.Feller,
and
M.C.Pitman
(2007).
Convergence of molecular dynamics simulations of membrane proteins.
|
| |
Proteins,
67,
31-40.
|
 |
|
|
|
|
 |
A.Strasser,
and
H.J.Wittmann
(2007).
Analysis of the activation mechanism of the guinea-pig Histamine H1-receptor.
|
| |
J Comput Aided Mol Des,
21,
499-509.
|
 |
|
|
|
|
 |
B.K.Kobilka
(2007).
G protein coupled receptor structure and activation.
|
| |
Biochim Biophys Acta,
1768,
794-807.
|
 |
|
|
|
|
 |
B.Knierim,
K.P.Hofmann,
O.P.Ernst,
and
W.L.Hubbell
(2007).
Sequence of late molecular events in the activation of rhodopsin.
|
| |
Proc Natl Acad Sci U S A,
104,
20290-20295.
|
 |
|
|
|
|
 |
C.M.Taylor,
G.V.Nikiforovich,
and
G.R.Marshall
(2007).
Defining the interface between the C-terminal fragment of alpha-transducin and photoactivated rhodopsin.
|
| |
Biophys J,
92,
4325-4334.
|
 |
|
|
|
|
 |
C.Volkringer,
D.Popov,
T.Loiseau,
N.Guillou,
G.Ferey,
M.Haouas,
F.Taulelle,
C.Mellot-Draznieks,
M.Burghammer,
and
C.Riekel
(2007).
A microdiffraction set-up for nanoporous metal-organic-framework-type solids.
|
| |
Nat Mater,
6,
760-764.
|
 |
|
|
|
|
 |
D.C.Plachetzki,
B.M.Degnan,
and
T.H.Oakley
(2007).
The Origins of Novel Protein Interactions during Animal Opsin Evolution.
|
| |
PLoS ONE,
2,
e1054.
|
 |
|
|
|
|
 |
D.T.Lodowski,
D.Salom,
I.Le Trong,
D.C.Teller,
J.A.Ballesteros,
K.Palczewski,
and
R.E.Stenkamp
(2007).
Crystal packing analysis of Rhodopsin crystals.
|
| |
J Struct Biol,
158,
455-462.
|
 |
|
|
|
|
 |
E.Ramon,
A.Cordomí,
L.Bosch,
E.Y.Zernii,
I.I.Senin,
J.Manyosa,
P.P.Philippov,
J.J.Pérez,
and
P.Garriga
(2007).
Critical role of electrostatic interactions of amino acids at the cytoplasmic region of helices 3 and 6 in rhodopsin conformational properties and activation.
|
| |
J Biol Chem,
282,
14272-14282.
|
 |
|
|
|
|
 |
F.Mancia,
S.Brenner-Morton,
R.Siegel,
Z.Assur,
Y.Sun,
I.Schieren,
M.Mendelsohn,
R.Axel,
and
W.A.Hendrickson
(2007).
Production and characterization of monoclonal antibodies sensitive to conformation in the 5HT2c serotonin receptor.
|
| |
Proc Natl Acad Sci U S A,
104,
4303-4308.
|
 |
|
|
|
|
 |
F.Mancia,
and
W.A.Hendrickson
(2007).
Expression of recombinant G-protein coupled receptors for structural biology.
|
| |
Mol Biosyst,
3,
723-734.
|
 |
|
|
|
|
 |
G.Kleinau,
M.Claus,
H.Jaeschke,
S.Mueller,
S.Neumann,
R.Paschke,
and
G.Krause
(2007).
Contacts between extracellular loop two and transmembrane helix six determine basal activity of the thyroid-stimulating hormone receptor.
|
| |
J Biol Chem,
282,
518-525.
|
 |
|
|
|
|
 |
G.von Heijne
(2007).
The membrane protein universe: what's out there and why bother?
|
| |
J Intern Med,
261,
543-557.
|
 |
|
|
|
|
 |
H.Nakamichi,
V.Buss,
and
T.Okada
(2007).
Photoisomerization mechanism of rhodopsin and 9-cis-rhodopsin revealed by x-ray crystallography.
|
| |
Biophys J,
92,
L106-L108.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.A.Grodnitzky,
N.Syed,
M.J.Kimber,
T.A.Day,
J.G.Donaldson,
and
W.H.Hsu
(2007).
Somatostatin receptors signal through EFA6A-ARF6 to activate phospholipase D in clonal beta-cells.
|
| |
J Biol Chem,
282,
13410-13418.
|
 |
|
|
|
|
 |
J.D.Otero-Cruz,
C.A.Báez-Pagán,
I.M.Caraballo-González,
and
J.A.Lasalde-Dominicci
(2007).
Tryptophan-scanning mutagenesis in the alphaM3 transmembrane domain of the muscle-type acetylcholine receptor. A spring model revealed.
|
| |
J Biol Chem,
282,
9162-9171.
|
 |
|
|
|
|
 |
J.M.Laurila,
H.Xhaard,
J.O.Ruuskanen,
M.J.Rantanen,
H.K.Karlsson,
M.S.Johnson,
and
M.Scheinin
(2007).
The second extracellular loop of alpha2A-adrenoceptors contributes to the binding of yohimbine analogues.
|
| |
Br J Pharmacol,
151,
1293-1304.
|
 |
|
|
|
|
 |
J.Standfuss,
G.Xie,
P.C.Edwards,
M.Burghammer,
D.D.Oprian,
and
G.F.Schertler
(2007).
Crystal structure of a thermally stable rhodopsin mutant.
|
| |
J Mol Biol,
372,
1179-1188.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.D.Ridge,
and
K.Palczewski
(2007).
Visual rhodopsin sees the light: structure and mechanism of G protein signaling.
|
| |
J Biol Chem,
282,
9297-9301.
|
 |
|
|
|
|
 |
K.Kuniyeda,
T.Okuno,
K.Terawaki,
M.Miyano,
T.Yokomizo,
and
T.Shimizu
(2007).
Identification of the intracellular region of the leukotriene B4 receptor type 1 that is specifically involved in Gi activation.
|
| |
J Biol Chem,
282,
3998-4006.
|
 |
|
|
|
|
 |
K.Werner,
I.Lehner,
H.K.Dhiman,
C.Richter,
C.Glaubitz,
H.Schwalbe,
J.Klein-Seetharaman,
and
H.G.Khorana
(2007).
Combined solid state and solution NMR studies of alpha,epsilon-15N labeled bovine rhodopsin.
|
| |
J Biomol NMR,
37,
303-312.
|
 |
|
|
|
|
 |
L.Pardo,
X.Deupi,
N.Dölker,
M.L.López-Rodríguez,
and
M.Campillo
(2007).
The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors.
|
| |
Chembiochem,
8,
19-24.
|
 |
|
|
|
|
 |
M.Conner,
S.R.Hawtin,
J.Simms,
D.Wootten,
Z.Lawson,
A.C.Conner,
R.A.Parslow,
and
M.Wheatley
(2007).
Systematic analysis of the entire second extracellular loop of the V(1a) vasopressin receptor: key residues, conserved throughout a G-protein-coupled receptor family, identified.
|
| |
J Biol Chem,
282,
17405-17412.
|
 |
|
|
|
|
 |
M.J.Smit,
H.F.Vischer,
R.A.Bakker,
A.Jongejan,
H.Timmerman,
L.Pardo,
and
R.Leurs
(2007).
Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity.
|
| |
Annu Rev Pharmacol Toxicol,
47,
53-87.
|
 |
|
|
|
|
 |
M.L.Matsumoto,
K.Narzinski,
P.D.Kiser,
G.V.Nikiforovich,
and
T.J.Baranski
(2007).
A comprehensive structure-function map of the intracellular surface of the human C5a receptor. I. Identification of critical residues.
|
| |
J Biol Chem,
282,
3105-3121.
|
 |
|
|
|
|
 |
M.Murakami,
R.Kitahara,
T.Gotoh,
and
T.Kouyama
(2007).
Crystallization and crystal properties of squid rhodopsin.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
63,
475-479.
|
 |
|
|
|
|
 |
M.S.Bee,
and
E.C.Hulme
(2007).
Functional analysis of transmembrane domain 2 of the M1 muscarinic acetylcholine receptor.
|
| |
J Biol Chem,
282,
32471-32479.
|
 |
|
|
|
|
 |
M.Zhang,
M.Goswami,
S.Sawai,
E.C.Cox,
and
D.Hereld
(2007).
Regulation of G protein-coupled cAMP receptor activation by a hydrophobic residue in transmembrane helix 3.
|
| |
Mol Microbiol,
65,
508-520.
|
 |
|
|
|
|
 |
P.Chelikani,
V.Hornak,
M.Eilers,
P.J.Reeves,
S.O.Smith,
U.L.RajBhandary,
and
H.G.Khorana
(2007).
Role of group-conserved residues in the helical core of beta2-adrenergic receptor.
|
| |
Proc Natl Acad Sci U S A,
104,
7027-7032.
|
 |
|
|
|
|
 |
P.S.Crozier,
M.J.Stevens,
and
T.B.Woolf
(2007).
How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations.
|
| |
Proteins,
66,
559-574.
|
 |
|
|
|
|
 |
P.S.Park,
K.T.Sapra,
M.Koliński,
S.Filipek,
K.Palczewski,
and
D.J.Muller
(2007).
Stabilizing effect of Zn2+ in native bovine rhodopsin.
|
| |
J Biol Chem,
282,
11377-11385.
|
 |
|
|
|
|
 |
P.W.Day,
S.G.Rasmussen,
C.Parnot,
J.J.Fung,
A.Masood,
T.S.Kobilka,
X.J.Yao,
H.J.Choi,
W.I.Weis,
D.K.Rohrer,
and
B.K.Kobilka
(2007).
A monoclonal antibody for G protein-coupled receptor crystallography.
|
| |
Nat Methods,
4,
927-929.
|
 |
|
|
|
|
 |
S.Anavi-Goffer,
D.Fleischer,
D.P.Hurst,
D.L.Lynch,
J.Barnett-Norris,
S.Shi,
D.L.Lewis,
S.Mukhopadhyay,
A.C.Howlett,
P.H.Reggio,
and
M.E.Abood
(2007).
Helix 8 Leu in the CB1 cannabinoid receptor contributes to selective signal transduction mechanisms.
|
| |
J Biol Chem,
282,
25100-25113.
|
 |
|
|
|
|
 |
S.G.Rasmussen,
H.J.Choi,
D.M.Rosenbaum,
T.S.Kobilka,
F.S.Thian,
P.C.Edwards,
M.Burghammer,
V.R.Ratnala,
R.Sanishvili,
R.F.Fischetti,
G.F.Schertler,
W.I.Weis,
and
B.K.Kobilka
(2007).
Crystal structure of the human beta2 adrenergic G-protein-coupled receptor.
|
| |
Nature,
450,
383-387.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
V.Binet,
B.Duthey,
J.Lecaillon,
C.Vol,
J.Quoyer,
G.Labesse,
J.P.Pin,
and
L.Prézeau
(2007).
Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors.
|
| |
J Biol Chem,
282,
12154-12163.
|
 |
|
|
|
|
 |
V.Cherezov,
D.M.Rosenbaum,
M.A.Hanson,
S.G.Rasmussen,
F.S.Thian,
T.S.Kobilka,
H.J.Choi,
P.Kuhn,
W.I.Weis,
B.K.Kobilka,
and
R.C.Stevens
(2007).
High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor.
|
| |
Science,
318,
1258-1265.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
A.Grossfield,
S.E.Feller,
and
M.C.Pitman
(2006).
A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids.
|
| |
Proc Natl Acad Sci U S A,
103,
4888-4893.
|
 |
|
|
|
|
 |
A.H.Geiser,
M.K.Sievert,
L.W.Guo,
J.E.Grant,
M.P.Krebs,
D.Fotiadis,
A.Engel,
and
A.E.Ruoho
(2006).
Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange.
|
| |
Protein Sci,
15,
1679-1690.
|
 |
|
|
|
|
 |
A.K.Kusnetzow,
C.Altenbach,
and
W.L.Hubbell
(2006).
Conformational states and dynamics of rhodopsin in micelles and bilayers.
|
| |
Biochemistry,
45,
5538-5550.
|
 |
|
|
|
|
 |
A.V.Botelho,
T.Huber,
T.P.Sakmar,
and
M.F.Brown
(2006).
Curvature and hydrophobic forces drive oligomerization and modulate activity of rhodopsin in membranes.
|
| |
Biophys J,
91,
4464-4477.
|
 |
|
|
|
|
 |
B.Proneth,
Z.Xiang,
I.D.Pogozheva,
S.A.Litherland,
O.S.Gorbatyuk,
A.M.Shaw,
W.J.Millard,
H.I.Mosberg,
and
C.Haskell-Luevano
(2006).
Molecular mechanism of the constitutive activation of the L250Q human melanocortin-4 receptor polymorphism.
|
| |
Chem Biol Drug Des,
67,
215-229.
|
 |
|
|
|
|
 |
C.E.Elling,
T.M.Frimurer,
L.O.Gerlach,
R.Jorgensen,
B.Holst,
and
T.W.Schwartz
(2006).
Metal ion site engineering indicates a global toggle switch model for seven-transmembrane receptor activation.
|
| |
J Biol Chem,
281,
17337-17346.
|
 |
|
|
|
|
 |
C.L.Piscitelli,
T.E.Angel,
B.W.Bailey,
P.Hargrave,
E.A.Dratz,
and
C.M.Lawrence
(2006).
Equilibrium between metarhodopsin-I and metarhodopsin-II is dependent on the conformation of the third cytoplasmic loop.
|
| |
J Biol Chem,
281,
6813-6825.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.L.Lynch,
and
P.H.Reggio
(2006).
Cannabinoid CB1 receptor recognition of endocannabinoids via the lipid bilayer: molecular dynamics simulations of CB1 transmembrane helix 6 and anandamide in a phospholipid bilayer.
|
| |
J Comput Aided Mol Des,
20,
495-509.
|
 |
|
|
|
|
 |
D.Salom,
D.T.Lodowski,
R.E.Stenkamp,
I.Le Trong,
M.Golczak,
B.Jastrzebska,
T.Harris,
J.A.Ballesteros,
and
K.Palczewski
(2006).
Crystal structure of a photoactivated deprotonated intermediate of rhodopsin.
|
| |
Proc Natl Acad Sci U S A,
103,
16123-16128.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.L.Mehler,
S.A.Hassan,
S.Kortagere,
and
H.Weinstein
(2006).
Ab initio computational modeling of loops in G-protein-coupled receptors: lessons from the crystal structure of rhodopsin.
|
| |
Proteins,
64,
673-690.
|
 |
|
|
|
|
 |
F.Boeckler,
and
P.Gmeiner
(2006).
The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects.
|
| |
Pharmacol Ther,
112,
281-333.
|
 |
|
|
|
|
 |
G.C.Pignatari,
R.Rozenfeld,
E.S.Ferro,
L.Oliveira,
A.C.Paiva,
and
L.A.Devi
(2006).
A role for transmembrane domains V and VI in ligand binding and maturation of the angiotensin II AT1 receptor.
|
| |
Biol Chem,
387,
269-276.
|
 |
|
|
|
|
 |
G.L.Fain
(2006).
Why photoreceptors die (and why they don't).
|
| |
Bioessays,
28,
344-354.
|
 |
|
|
|
|
 |
G.V.Nikiforovich,
M.Zhang,
Q.Yang,
G.Jagadeesh,
H.C.Chen,
L.Hunyady,
G.R.Marshall,
and
K.J.Catt
(2006).
Interactions between conserved residues in transmembrane helices 2 and 7 during angiotensin AT1 receptor activation.
|
| |
Chem Biol Drug Des,
68,
239-249.
|
 |
|
|
|
|
 |
H.Nakamichi,
and
T.Okada
(2006).
Local peptide movement in the photoreaction intermediate of rhodopsin.
|
| |
Proc Natl Acad Sci U S A,
103,
12729-12734.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Nakamichi,
and
T.Okada
(2006).
Crystallographic analysis of primary visual photochemistry.
|
| |
Angew Chem Int Ed Engl,
45,
4270-4273.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
I.S.Hagemann,
K.D.Narzinski,
D.H.Floyd,
and
T.J.Baranski
(2006).
Random mutagenesis of the complement factor 5a (C5a) receptor N terminus provides a structural constraint for C5a docking.
|
| |
J Biol Chem,
281,
36783-36792.
|
 |
|
|
|
|
 |
I.Szundi,
J.J.Ruprecht,
J.Epps,
C.Villa,
T.E.Swartz,
J.W.Lewis,
G.F.Schertler,
and
D.S.Kliger
(2006).
Rhodopsin photointermediates in two-dimensional crystals at physiological temperatures.
|
| |
Biochemistry,
45,
4974-4982.
|
 |
|
|
|
|
 |
J.W.Lewis,
I.Szundi,
M.A.Kazmi,
T.P.Sakmar,
and
D.S.Kliger
(2006).
Proton movement and photointermediate kinetics in rhodopsin mutants.
|
| |
Biochemistry,
45,
5430-5439.
|
 |
|
|
|
|
 |
K.D.Ridge,
N.G.Abdulaev,
C.Zhang,
T.Ngo,
D.M.Brabazon,
and
J.P.Marino
(2006).
Conformational changes associated with receptor-stimulated guanine nucleotide exchange in a heterotrimeric G-protein alpha-subunit: NMR analysis of GTPgammaS-bound states.
|
| |
J Biol Chem,
281,
7635-7648.
|
 |
|
|
|
|
 |
K.Palczewski
(2006).
G protein-coupled receptor rhodopsin.
|
| |
Annu Rev Biochem,
75,
743-767.
|
 |
|
|
|
|
 |
K.Ye,
E.W.Lameijer,
M.W.Beukers,
and
A.P.Ijzerman
(2006).
A two-entropies analysis to identify functional positions in the transmembrane region of class A G protein-coupled receptors.
|
| |
Proteins,
63,
1018-1030.
|
 |
|
|
|
|
 |
M.Domínguez,
R.Alvarez,
M.Pérez,
K.Palczewski,
and
A.R.de Lera
(2006).
The role of the 11-cis-retinal ring methyl substituents in visual pigment formation.
|
| |
Chembiochem,
7,
1815-1825.
|
 |
|
|
|
|
 |
M.R.Lewis,
and
M.Kono
(2006).
Rhodopsin deactivation is affected by mutations of Tyrl91.
|
| |
Photochem Photobiol,
82,
1442-1446.
|
 |
|
|
|
|
 |
M.Y.Niv,
L.Skrabanek,
M.Filizola,
and
H.Weinstein
(2006).
Modeling activated states of GPCRs: the rhodopsin template.
|
| |
J Comput Aided Mol Des,
20,
437-448.
|
 |
|
|
|
|
 |
N.André,
N.Cherouati,
C.Prual,
T.Steffan,
G.Zeder-Lutz,
T.Magnin,
F.Pattus,
H.Michel,
R.Wagner,
and
C.Reinhart
(2006).
Enhancing functional production of G protein-coupled receptors in Pichia pastoris to levels required for structural studies via a single expression screen.
|
| |
Protein Sci,
15,
1115-1126.
|
 |
|
|
|
|
 |
O.Soubias,
W.E.Teague,
and
K.Gawrisch
(2006).
Evidence for specificity in lipid-rhodopsin interactions.
|
| |
J Biol Chem,
281,
33233-33241.
|
 |
|
|
|
|
 |
P.H.Reggio
(2006).
Computational methods in drug design: modeling G protein-coupled receptor monomers, dimers, and oligomers.
|
| |
AAPS J,
8,
E322-E336.
|
 |
|
|
|
|
 |
R.B.Jacobsen,
K.L.Sale,
M.J.Ayson,
P.Novak,
J.Hong,
P.Lane,
N.L.Wood,
G.H.Kruppa,
M.M.Young,
and
J.S.Schoeniger
(2006).
Structure and dynamics of dark-state bovine rhodopsin revealed by chemical cross-linking and high-resolution mass spectrometry.
|
| |
Protein Sci,
15,
1303-1317.
|
 |
|
|
|
|
 |
R.Grisshammer
(2006).
Understanding recombinant expression of membrane proteins.
|
| |
Curr Opin Biotechnol,
17,
337-340.
|
 |
|
|
|
|
 |
S.Kortagere,
A.Roy,
and
E.L.Mehler
(2006).
Ab initio computational modeling of long loops in G-protein coupled receptors.
|
| |
J Comput Aided Mol Des,
20,
427-436.
|
 |
|
|
|
|
 |
S.R.Hawtin,
J.Simms,
M.Conner,
Z.Lawson,
R.A.Parslow,
J.Trim,
A.Sheppard,
and
M.Wheatley
(2006).
Charged extracellular residues, conserved throughout a G-protein-coupled receptor family, are required for ligand binding, receptor activation, and cell-surface expression.
|
| |
J Biol Chem,
281,
38478-38488.
|
 |
|
|
|
|
 |
S.Swift,
A.J.Leger,
J.Talavera,
L.Zhang,
A.Bohm,
and
A.Kuliopulos
(2006).
Role of the PAR1 receptor 8th helix in signaling: the 7-8-1 receptor activation mechanism.
|
| |
J Biol Chem,
281,
4109-4116.
|
 |
|
|
|
|
 |
T.W.Schwartz,
T.M.Frimurer,
B.Holst,
M.M.Rosenkilde,
and
C.E.Elling
(2006).
Molecular mechanism of 7TM receptor activation--a global toggle switch model.
|
| |
Annu Rev Pharmacol Toxicol,
46,
481-519.
|
 |
|
|
|
|
 |
V.Soni,
T.Yasui,
E.Cahir-McFarland,
and
E.Kieff
(2006).
LMP1 transmembrane domain 1 and 2 (TM1-2) FWLY mediates intermolecular interactions with TM3-6 to activate NF-kappaB.
|
| |
J Virol,
80,
10787-10793.
|
 |
|
|
|
|
 |
V.V.Gurevich,
and
E.V.Gurevich
(2006).
The structural basis of arrestin-mediated regulation of G-protein-coupled receptors.
|
| |
Pharmacol Ther,
110,
465-502.
|
 |
|
|
|
|
 |
X.Yao,
C.Parnot,
X.Deupi,
V.R.Ratnala,
G.Swaminath,
D.Farrens,
and
B.Kobilka
(2006).
Coupling ligand structure to specific conformational switches in the beta2-adrenoceptor.
|
| |
Nat Chem Biol,
2,
417-422.
|
 |
|
|
|
|
 |
X.Zhao,
Y.Nagai,
P.J.Reeves,
P.Kiley,
H.G.Khorana,
and
S.Zhang
(2006).
Designer short peptide surfactants stabilize G protein-coupled receptor bovine rhodopsin.
|
| |
Proc Natl Acad Sci U S A,
103,
17707-17712.
|
 |
|
|
|
|
 |
Y.Choi,
and
J.B.Konopka
(2006).
Accessibility of cysteine residues substituted into the cytoplasmic regions of the alpha-factor receptor identifies the intracellular residues that are available for G protein interaction.
|
| |
Biochemistry,
45,
15310-15317.
|
 |
|
|
|
|
 |
A.Jongejan,
M.Bruysters,
J.A.Ballesteros,
E.Haaksma,
R.A.Bakker,
L.Pardo,
and
R.Leurs
(2005).
Linking agonist binding to histamine H1 receptor activation.
|
| |
Nat Chem Biol,
1,
98.
|
 |
|
|
|
|
 |
A.Jongejan,
and
R.Leurs
(2005).
Delineation of receptor-ligand interactions at the human histamine H1 receptor by a combined approach of site-directed mutagenesis and computational techniques - or - how to bind the H1 receptor.
|
| |
Arch Pharm (Weinheim),
338,
248-259.
|
 |
|
|
|
|
 |
B.Li,
N.M.Nowak,
S.K.Kim,
K.A.Jacobson,
A.Bagheri,
C.Schmidt,
and
J.Wess
(2005).
Random mutagenesis of the M3 muscarinic acetylcholine receptor expressed in yeast: identification of second-site mutations that restore function to a coupling-deficient mutant M3 receptor.
|
| |
J Biol Chem,
280,
5664-5675.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.Zheng,
C.J.Gerdts,
and
R.F.Ismagilov
(2005).
Using nanoliter plugs in microfluidics to facilitate and understand protein crystallization.
|
| |
Curr Opin Struct Biol,
15,
548-555.
|
 |
|
|
|
|
 |
C.J.daCosta,
D.E.Kaiser,
and
J.E.Baenziger
(2005).
Role of glycosylation and membrane environment in nicotinic acetylcholine receptor stability.
|
| |
Biophys J,
88,
1755-1764.
|
 |
|
|
|
|
 |
C.Riekel,
M.Burghammer,
and
G.Schertler
(2005).
Protein crystallography microdiffraction.
|
| |
Curr Opin Struct Biol,
15,
556-562.
|
 |
|
|
|
|
 |
E.Hamelin,
C.Thériault,
G.Laroche,
and
J.L.Parent
(2005).
The intracellular trafficking of the G protein-coupled receptor TPbeta depends on a direct interaction with Rab11.
|
| |
J Biol Chem,
280,
36195-36205.
|
 |
|
|
|
|
 |
E.Urizar,
S.Claeysen,
X.Deupí,
C.Govaerts,
S.Costagliola,
G.Vassart,
and
L.Pardo
(2005).
An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor.
|
| |
J Biol Chem,
280,
17135-17141.
|
 |
|
|
|
|
 |
F.Blomgren,
and
S.Larsson
(2005).
Exploring the potential energy surface of retinal, a comparison of the performance of different methods.
|
| |
J Comput Chem,
26,
738-742.
|
 |
|
|
|
|
 |
F.J.Bartl,
O.Fritze,
E.Ritter,
R.Herrmann,
V.Kuksa,
K.Palczewski,
K.P.Hofmann,
and
O.P.Ernst
(2005).
Partial agonism in a G Protein-coupled receptor: role of the retinal ring structure in rhodopsin activation.
|
| |
J Biol Chem,
280,
34259-34267.
|
 |
|
|
|
|
 |
G.V.Nikiforovich,
B.Mihalik,
K.J.Catt,
and
G.R.Marshall
(2005).
Molecular mechanisms of constitutive activity: mutations at position 111 of the angiotensin AT1 receptor.
|
| |
J Pept Res,
66,
236-248.
|
 |
|
|
|
|
 |
G.V.Nikiforovich,
and
G.R.Marshall
(2005).
Modeling flexible loops in the dark-adapted and activated states of rhodopsin, a prototypical G-protein-coupled receptor.
|
| |
Biophys J,
89,
3780-3789.
|
 |
|
|
|
|
 |
I.D.Pogozheva,
B.X.Chai,
A.L.Lomize,
T.M.Fong,
D.H.Weinberg,
R.P.Nargund,
M.W.Mulholland,
I.Gantz,
and
H.I.Mosberg
(2005).
Interactions of human melanocortin 4 receptor with nonpeptide and peptide agonists.
|
| |
Biochemistry,
44,
11329-11341.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
I.D.Pogozheva,
M.J.Przydzial,
and
H.I.Mosberg
(2005).
Homology modeling of opioid receptor-ligand complexes using experimental constraints.
|
| |
AAPS J,
7,
E434-E448.
|
 |
|
|
|
|
 |
J.Ciarkowski,
M.Witt,
and
R.Slusarz
(2005).
A hypothesis for GPCR activation.
|
| |
J Mol Model,
11,
407-415.
|
 |
|
|
|
|
 |
J.Y.Springael,
E.Urizar,
and
M.Parmentier
(2005).
Dimerization of chemokine receptors and its functional consequences.
|
| |
Cytokine Growth Factor Rev,
16,
611-623.
|
 |
|
|
|
|
 |
M.J.Przydzial,
I.D.Pogozheva,
J.C.Ho,
K.E.Bosse,
E.Sawyer,
J.R.Traynor,
and
H.I.Mosberg
(2005).
Design of high affinity cyclic pentapeptide ligands for kappa-opioid receptors.
|
| |
J Pept Res,
66,
255-262.
|
 |
|
|
|
|
 |
N.G.Abdulaev,
C.Zhang,
A.Dinh,
T.Ngo,
P.N.Bryan,
D.M.Brabazon,
J.P.Marino,
and
K.D.Ridge
(2005).
Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein alpha-subunit.
|
| |
J Biomol NMR,
32,
31-40.
|
 |
|
|
|
|
 |
N.G.Abdulaev,
T.Ngo,
C.Zhang,
A.Dinh,
D.M.Brabazon,
K.D.Ridge,
and
J.P.Marino
(2005).
Heterotrimeric G-protein alpha-subunit adopts a "preactivated" conformation when associated with betagamma-subunits.
|
| |
J Biol Chem,
280,
38071-38080.
|
 |
|
|
|
|
 |
R.E.Stenkamp,
D.C.Teller,
and
K.Palczewski
(2005).
Rhodopsin: a structural primer for G-protein coupled receptors.
|
| |
Arch Pharm (Weinheim),
338,
209-216.
|
 |
|
|
|
|
 |
S.Filipek
(2005).
Organization of rhodopsin molecules in native membranes of rod cells--an old theoretical model compared to new experimental data.
|
| |
J Mol Model,
11,
385-391.
|
 |
|
|
|
|
 |
S.J.Han,
F.F.Hamdan,
S.K.Kim,
K.A.Jacobson,
L.M.Bloodworth,
B.Li,
and
J.Wess
(2005).
Identification of an agonist-induced conformational change occurring adjacent to the ligand-binding pocket of the M(3) muscarinic acetylcholine receptor.
|
| |
J Biol Chem,
280,
34849-34858.
|
 |
|
|
|
|
 |
V.M.Tesmer,
T.Kawano,
A.Shankaranarayanan,
T.Kozasa,
and
J.J.Tesmer
(2005).
Snapshot of activated G proteins at the membrane: the Galphaq-GRK2-Gbetagamma complex.
|
| |
Science,
310,
1686-1690.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Xu,
M.Campillo,
L.Pardo,
J.Kim de Riel,
and
L.Y.Liu-Chen
(2005).
The seventh transmembrane domains of the delta and kappa opioid receptors have different accessibility patterns and interhelical interactions.
|
| |
Biochemistry,
44,
16014-16025.
|
 |
|
|
|
|
 |
J.M.Janz,
and
D.L.Farrens
(2004).
Role of the retinal hydrogen bond network in rhodopsin Schiff base stability and hydrolysis.
|
| |
J Biol Chem,
279,
55886-55894.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |