spacer
spacer

PDBsum entry 7jn4

Go to PDB code: 
protein Protein-protein interface(s) links
Plant protein PDB id
7jn4

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
(+ 2 more) 427 a.a.
(+ 2 more) 138 a.a.
Waters ×232
PDB id:
7jn4
Name: Plant protein
Title: Rubisco in the apo state
Structure: Ribulose bisphosphate carboxylase large chain. Chain: a, c, e, g, i, k, m, o. Synonym: rubisco large subunit. Ribulose bisphosphate carboxylase small chain 2, chloroplastic. Chain: b, d, f, h, j, l, n, p. Synonym: rubisco small subunit 2. Ec: 4.1.1.39
Source: Chlamydomonas reinhardtii. Organism_taxid: 3055. Organism_taxid: 3055
Authors: D.Matthies,M.C.Jonikas,S.He
Key ref: S.He et al. (2020). The structural basis of Rubisco phase separation in the pyrenoid. Nat Plants, 6, 1480-1490. PubMed id: 33230314 DOI: 10.1016/j.bpj.2010.10.011
Date:
03-Aug-20     Release date:   18-Nov-20    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P00877  (RBL_CHLRE) -  Ribulose bisphosphate carboxylase large chain from Chlamydomonas reinhardtii
Seq:
Struc:
475 a.a.
427 a.a.*
Protein chains
Pfam   ArchSchema ?
P08475  (RBS2_CHLRE) -  Ribulose bisphosphate carboxylase small subunit, chloroplastic 2 from Chlamydomonas reinhardtii
Seq:
Struc:
185 a.a.
138 a.a.
Key:    PfamA domain  Secondary structure
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: Chains A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P: E.C.4.1.1.39  - ribulose-bisphosphate carboxylase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 (2R)-3-phosphoglycerate + 2 H+ = D-ribulose 1,5-bisphosphate + CO2 + H2O
2 × (2R)-3-phosphoglycerate
+ 2 × H(+)
= D-ribulose 1,5-bisphosphate
+ CO2
+ H2O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1016/j.bpj.2010.10.011 Nat Plants 6:1480-1490 (2020)
PubMed id: 33230314  
 
 
The structural basis of Rubisco phase separation in the pyrenoid.
S.He, H.T.Chou, D.Matthies, T.Wunder, M.T.Meyer, N.Atkinson, A.Martinez-Sanchez, P.D.Jeffrey, S.A.Port, W.Patena, G.He, V.K.Chen, F.M.Hughson, A.J.McCormick, O.Mueller-Cajar, B.D.Engel, Z.Yu, M.C.Jonikas.
 
  ABSTRACT  
 
Approximately one-third of global CO2 fixation occurs in a phase-separated algal organelle called the pyrenoid. The existing data suggest that the pyrenoid forms by the phase separation of the CO2-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein Essential Pyrenoid Component 1 (EPYC1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation and pyrenoid formation. Cryo-electron tomography supports a model in which EPYC1 and Rubisco form a codependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle.
 

 

spacer

spacer