spacer
spacer

PDBsum entry 4zcf

Go to PDB code: 
protein dna_rna ligands metals Protein-protein interface(s) links
Hydrolase-DNA complex PDB id
4zcf

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
616 a.a.
612 a.a.
627 a.a.
DNA/RNA
Ligands
AMP
Metals
_MN ×2
_CA
Waters ×95
PDB id:
4zcf
Name: Hydrolase-DNA complex
Title: Structural basis of asymmetric DNA methylation and atp-triggered long- range diffusion by ecop15i
Structure: Restriction endonuclease ecop15i, modification subunit. Chain: a, b. Engineered: yes. Restriction endonuclease ecop15i, restriction subunit. Chain: c. Engineered: yes. DNA 20-mer atacagcagtagactatgat. Chain: d. Engineered: yes.
Source: Escherichia coli. Organism_taxid: 562. Gene: ecop15imod. Expressed in: escherichia coli. Expression_system_taxid: 562. Gene: ecop15ires. Synthetic: yes. Organism_taxid: 562
Resolution:
2.60Å     R-factor:   0.221     R-free:   0.263
Authors: Y.K.Gupta,S.H.Chan,S.Y.Xu,A.K.Aggarwal
Key ref: Y.K.Gupta et al. (2015). Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I. Nat Commun, 6, 7363. PubMed id: 26067164 DOI: 10.1038/ncomms8363
Date:
15-Apr-15     Release date:   29-Jul-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P12364  (T3MO_ECOLX) -  Type III restriction-modification enzyme EcoP15I Mod subunit from Escherichia coli
Seq:
Struc:
 
Seq:
Struc:
644 a.a.
616 a.a.
Protein chain
Pfam   ArchSchema ?
P12364  (T3MO_ECOLX) -  Type III restriction-modification enzyme EcoP15I Mod subunit from Escherichia coli
Seq:
Struc:
 
Seq:
Struc:
644 a.a.
612 a.a.
Protein chain
Pfam   ArchSchema ?
Q5ZND2  (T3RE_ECOLX) -  Type III restriction-modification enzyme EcoP15I Res subunit from Escherichia coli
Seq:
Struc:
 
Seq:
Struc:
970 a.a.
627 a.a.
Key:    PfamA domain  Secondary structure

DNA/RNA chains
  A-T-A-C-A-G-C-A-G-T-A-G-A-C-T-A-T-G-A-T 20 bases
  A-A-T-C-A-T-A-G-T-C-T-A-C-T-G-C-T-G-T-A 20 bases

 Enzyme reactions 
   Enzyme class 1: Chains A, B: E.C.2.1.1.72  - site-specific DNA-methyltransferase (adenine-specific).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: a 2'-deoxyadenosine in DNA + S-adenosyl-L-methionine = an N6-methyl- 2'-deoxyadenosine in DNA + S-adenosyl-L-homocysteine + H+
2'-deoxyadenosine in DNA
+ S-adenosyl-L-methionine
= N(6)-methyl- 2'-deoxyadenosine in DNA
+ S-adenosyl-L-homocysteine
+ H(+)
Bound ligand (Het Group name = AMP)
matches with 58.06% similarity
   Enzyme class 2: Chain C: E.C.3.1.21.5  - type Iii site-specific deoxyribonuclease.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endonucleolytic cleavage of DNA to give specific double-stranded fragments with terminal 5'-phosphates.
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1038/ncomms8363 Nat Commun 6:7363 (2015)
PubMed id: 26067164  
 
 
Structural basis of asymmetric DNA methylation and ATP-triggered long-range diffusion by EcoP15I.
Y.K.Gupta, S.H.Chan, S.Y.Xu, A.K.Aggarwal.
 
  ABSTRACT  
 
Type III R-M enzymes were identified >40 years ago and yet there is no structural information on these multisubunit enzymes. Here we report the structure of a Type III R-M system, consisting of the entire EcoP15I complex (Mod2Res1) bound to DNA. The structure suggests how ATP hydrolysis is coupled to long-range diffusion of a helicase on DNA, and how a dimeric methyltransferase functions to methylate only one of the two DNA strands. We show that the EcoP15I motor domains are specifically adapted to bind double-stranded DNA and to facilitate DNA sliding via a novel 'Pin' domain. We also uncover unexpected 'division of labour', where one Mod subunit recognizes DNA, while the other Mod subunit methylates the target adenine-a mechanism that may extend to adenine N6 RNA methylation in mammalian cells. Together the structure sheds new light on the mechanisms of both helicases and methyltransferases in DNA and RNA metabolism.
 

 

spacer

spacer