spacer
spacer

PDBsum entry 4ret

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Membrane protein, hydrolase/inhibitor PDB id
4ret

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
996 a.a.
290 a.a.
32 a.a.
Ligands
NAG-NAG
GLC-FRU ×2
CLR ×4
DGX ×2
17F ×3
NAG ×4
Metals
_MG ×6
Waters ×6
PDB id:
4ret
Name: Membrane protein, hydrolase/inhibitor
Title: Crystal structure of the na,k-atpase e2p-digoxin complex with bound magnesium
Structure: Sodium/potassium-transporting atpase subunit alpha-1. Chain: a, c. Synonym: na(+)/k(+) atpase alpha-1 subunit, sodium pump subunit alpha-1. Sodium/potassium-transporting atpase subunit beta-1. Chain: b, d. Synonym: na(+),k)(+)-atpase beta-1 subunit, sodium/potassium- dependent atpase subunit beta-1. Na+/k+ atpase gamma subunit transcript variant a.
Source: Sus scrofa. Pig. Organism_taxid: 9823. Organism_taxid: 9823
Resolution:
4.00Å     R-factor:   0.223     R-free:   0.253
Authors: J.L.Gregersen,M.Laursen,L.Yatime,P.Nissen,N.U.Fedosova
Key ref: M.Laursen et al. (2015). Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex. Proc Natl Acad Sci U S A, 112, 1755-1760. PubMed id: 25624492 DOI: 10.1073/pnas.1422997112
Date:
23-Sep-14     Release date:   28-Jan-15    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P05024  (AT1A1_PIG) -  Sodium/potassium-transporting ATPase subunit alpha-1 from Sus scrofa
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1021 a.a.
996 a.a.*
Protein chains
Pfam   ArchSchema ?
P05027  (AT1B1_PIG) -  Sodium/potassium-transporting ATPase subunit beta-1 from Sus scrofa
Seq:
Struc:
303 a.a.
290 a.a.
Protein chains
Pfam   ArchSchema ?
Q58K79  (Q58K79_PIG) -  FXYD domain-containing ion transport regulator from Sus scrofa
Seq:
Struc:
65 a.a.
32 a.a.
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class 2: Chains A, C: E.C.7.2.2.13  - Na(+)/K(+)-exchanging ATPase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: K+(out) + Na+(in) + ATP + H2O = K+(in) + Na(+)(out) + ADP + phosphate + H(+)
K(+)(out)
+ Na(+)(in)
+ ATP
+ H2O
= K(+)(in)
Bound ligand (Het Group name = NAG)
matches with 41.38% similarity
+ Na(+)(out)
+ ADP
+ phosphate
+ H(+)
      Cofactor: Mg(2+)
   Enzyme class 3: Chains B, G, D, E: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1073/pnas.1422997112 Proc Natl Acad Sci U S A 112:1755-1760 (2015)
PubMed id: 25624492  
 
 
Structures and characterization of digoxin- and bufalin-bound Na+,K+-ATPase compared with the ouabain-bound complex.
M.Laursen, J.L.Gregersen, L.Yatime, P.Nissen, N.U.Fedosova.
 
  ABSTRACT  
 
Cardiotonic steroids (CTSs) are specific and potent inhibitors of the Na(+),K(+)-ATPase, with highest affinity to the phosphoenzyme (E2P) forms. CTSs are comprised of a steroid core, which can be glycosylated, and a varying number of substituents, including a five- or six-membered lactone. These functionalities have specific influence on the binding properties. We report crystal structures of the Na(+),K(+)-ATPase in the E2P form in complex with bufalin (a nonglycosylated CTS with a six-membered lactone) and digoxin (a trisaccharide-conjugated CTS with a five-membered lactone) and compare their characteristics and binding kinetics with the previously described E2P-ouabain complex to derive specific details and the general mechanism of CTS binding and inhibition. CTSs block the extracellular cation exchange pathway, and cation-binding sites I and II are differently occupied: A single Mg(2+) is bound in site II of the digoxin and ouabain complexes, whereas both sites are occupied by K(+) in the E2P-bufalin complex. In all complexes, αM4 adopts a wound form, characteristic for the E2P state and favorable for high-affinity CTS binding. We conclude that the occupants of the cation-binding site and the type of the lactone substituent determine the arrangement of αM4 and hypothesize that winding/unwinding of αM4 represents a trigger for high-affinity CTS binding. We find that the level of glycosylation affects the depth of CTS binding and that the steroid core substituents fine tune the configuration of transmembrane helices αM1-2.
 

 

spacer

spacer