spacer
spacer

PDBsum entry 3hm9

Go to PDB code: 
protein dna_rna metals links
Nucleic acid binding protein/DNA/RNA PDB id
3hm9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
654 a.a. *
DNA/RNA
Metals
_MG ×2
* Residue conservation analysis
PDB id:
3hm9
Name: Nucleic acid binding protein/DNA/RNA
Title: Crystal structure of t. Thermophilus argonaute complexed with DNA guide strand and 19-nt RNA target strand
Structure: Argonaute. Chain: a. Engineered: yes. 5'-d(p Tp Gp Ap Gp Gp Tp Ap Gp Tp Ap Gp Gp Tp Tp Gp Tp Ap T p Ap Gp T)-3'. Chain: x. Engineered: yes. 5'-r( Up Ap Up Ap Cp Ap Ap Cp Cp Up Ap Cp Up Ap Cp Cp Up Cp G)-3'.
Source: Thermus thermophilus. Organism_taxid: 262724. Strain: hb27. Gene: tt_p0026. Expressed in: escherichia coli. Expression_system_taxid: 562. Synthetic: yes. Synthetic: yes
Resolution:
3.30Å     R-factor:   0.239     R-free:   0.289
Authors: Y.Wang,H.Li,G.Sheng,D.J.Patel
Key ref:
Y.Wang et al. (2009). Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature, 461, 754-761. PubMed id: 19812667 DOI: 10.1038/nature08434
Date:
28-May-09     Release date:   06-Oct-09    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q746M7  (AGO_THET2) -  Protein argonaute from Thermus thermophilus (strain ATCC BAA-163 / DSM 7039 / HB27)
Seq:
Struc:
 
Seq:
Struc:
685 a.a.
654 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chains
  T-G-A-G-G-T-A-G-T-A-G-G-T-T-G-T 16 bases
  A-A-C-C-U-A-C-U-A-C-C-U-C 13 bases

 Enzyme reactions 
   Enzyme class: E.C.3.1.24.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/nature08434 Nature 461:754-761 (2009)
PubMed id: 19812667  
 
 
Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes.
Y.Wang, S.Juranek, H.Li, G.Sheng, G.S.Wardle, T.Tuschl, D.J.Patel.
 
  ABSTRACT  
 
The slicer activity of the RNA-induced silencing complex resides within its Argonaute (Ago) component, in which the PIWI domain provides the catalytic residues governing guide-strand mediated site-specific cleavage of target RNA. Here we report on structures of ternary complexes of Thermus thermophilus Ago catalytic mutants with 5'-phosphorylated 21-nucleotide guide DNA and complementary target RNAs of 12, 15 and 19 nucleotides in length, which define the molecular basis for Mg(2+)-facilitated site-specific cleavage of the target. We observe pivot-like domain movements within the Ago scaffold on proceeding from nucleation to propagation steps of guide-target duplex formation, with duplex zippering beyond one turn of the helix requiring the release of the 3'-end of the guide from the PAZ pocket. Cleavage assays on targets of various lengths supported this model, and sugar-phosphate-backbone-modified target strands showed the importance of structural and catalytic divalent metal ions observed in the crystal structures.
 
  Selected figure(s)  
 
Figure 4.
Figure 4: Effect of complementarity and length on target DNA cleavage by T. thermophilus Ago. Cleavage reactions were performed as described in the Methods, and products were resolved on denaturing polyacrylamide gels; for DNA sequences, see Supplementary Table 4. a, Schematic of the reference DNA duplex utilized for length variation experiments; the cleavage site is indicated by an arrow, the position of the ^32P label by an asterisk. b, Shortening of the target DNA from its 5' end. Alterations of the target DNA and corresponding paired structure are illustrated to the left. Target DNA cleavage was performed at 65 °C rather than 75 °C to facilitate hybridization of shortened targets. nt, nucleotides. c, Positional variation of 15-nucleotide target DNAs. For labelling and reaction conditions, see b.
Figure 5.
Figure 5: Effect of sugar-phosphate backbone modifications on target DNA cleavage by T. thermophilus Ago. Cleavage experiments were performed as described in Methods. a, 2'-fluoro-, 2'-methoxy- and 2'-hydroxyl-substitutions of single 2'-deoxyribose residues of the target DNA strand at and near the cleavage site. The control target (unmod.) was the unmodified oligodeoxynucleotide. b, Phosphorothioate modification of the target DNA. The phosphate configuration (R[P] or S[P]) of the phosphorothioate diastereomers is indicated. Cleavage assays were performed in the presence of either Mg^2+ or Mn^2+ cations. Note that the experiment for the 11'–12' isomers was a different experiment, in which overall reaction rates were slower. For the complete experiment see Supplementary Fig. 25. Sequences of oligonucleotides are in Supplementary Table 4. c, Structure of the cleavage site modelling the attack of the hydroxyl nucleophile. Phosphate oxygen and active site carboxylate oxygens coordinated to metal ions A and B (purple spheres), with distances less than 2.5 Šshown as blue dashed lines. The coordination of the carboxylate oxygen from Asp 546 to metal ion B is hidden in the projection. The phosphate oxygens and 2' residues sensitive to modification are shown as yellow and green spheres, respectively; R denotes 2'-H, -OH, -F or -Ome. Red arrows indicate the attack of the hydroxyl nucleophile modelled to be directly coordinated by metal ion A, and the stabilization of the developing negative charge of the 3' oxyanion leaving group by metal ion B.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nature (2009, 461, 754-761) copyright 2009.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22767235 H.M.Sasaki, and Y.Tomari (2012).
The true core of RNA silencing revealed.
  Nat Struct Mol Biol, 19, 657-660.  
22722195 K.Nakanishi, D.E.Weinberg, D.P.Bartel, and D.J.Patel (2012).
Structure of yeast Argonaute with guide RNA.
  Nature, 486, 368-374.
PDB code: 4f1n
22233755 P.B.Kwak, and Y.Tomari (2012).
The N domain of Argonaute drives duplex unwinding during RISC assembly.
  Nat Struct Mol Biol, 19, 145-151.  
22343717 S.W.Chi, G.J.Hannon, and R.B.Darnell (2012).
An alternative mode of microRNA target recognition.
  Nat Struct Mol Biol, 19, 321-327.  
21116305 B.Czech, and G.J.Hannon (2011).
Small RNA sorting: matchmaking for Argonautes.
  Nat Rev Genet, 12, 19-31.  
21220300 E.S.Machlin, P.Sarnow, and S.M.Sagan (2011).
Masking the 5' terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex.
  Proc Natl Acad Sci U S A, 108, 3193-3198.  
21171007 M.Aigner, M.Hartl, K.Fauster, J.Steger, K.Bister, and R.Micura (2011).
Chemical synthesis of site-specifically 2'-azido-modified RNA and potential applications for bioconjugation and RNA interference.
  Chembiochem, 12, 47-51.  
22056803 M.Hafner, M.Ascano, and T.Tuschl (2011).
New insights in the mechanism of microRNA-mediated target repression.
  Nat Struct Mol Biol, 18, 1181-1182.  
21268154 M.Maiti, K.Nauwelaerts, E.Lescrinier, and P.Herdewijn (2011).
Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy.
  Chemistry, 17, 1519-1528.  
22121019 M.Reuter, P.Berninger, S.Chuma, H.Shah, M.Hosokawa, C.Funaya, C.Antony, R.Sachidanandam, and R.S.Pillai (2011).
Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing.
  Nature, 480, 264-267.  
  21401928 N.Schultz, D.R.Marenstein, D.A.De Angelis, W.Q.Wang, S.Nelander, A.Jacobsen, D.S.Marks, J.Massagué, and C.Sander (2011).
Off-target effects dominate a large-scale RNAi screen for modulators of the TGF-β pathway and reveal microRNA regulation of TGFBR2.
  Silence, 2, 3.  
21292970 S.Djuranovic, A.Nahvi, and R.Green (2011).
A parsimonious model for gene regulation by miRNAs.
  Science, 331, 550-553.  
21071408 S.Rüdel, Y.Wang, R.Lenobel, R.Körner, H.H.Hsiao, H.Urlaub, D.Patel, and G.Meister (2011).
Phosphorylation of human Argonaute proteins affects small RNA binding.
  Nucleic Acids Res, 39, 2330-2343.  
20854710 W.Yang (2011).
Nucleases: diversity of structure, function and mechanism.
  Q Rev Biophys, 44, 1.  
21552258 X.Ye, N.Huang, Y.Liu, Z.Paroo, C.Huerta, P.Li, S.Chen, Q.Liu, and H.Zhang (2011).
Structure of C3PO and mechanism of human RISC activation.
  Nat Struct Mol Biol, 18, 650-657.
PDB codes: 3pja 3qb5
21193640 Y.Tian, D.K.Simanshu, J.B.Ma, and D.J.Patel (2011).
Structural basis for piRNA 2'-O-methylated 3'-end recognition by Piwi PAZ (Piwi/Argonaute/Zwille) domains.
  Proc Natl Acad Sci U S A, 108, 903-910.
PDB codes: 3o3i 3o6e 3o7v 3o7x
21552261 Y.Tian, D.K.Simanshu, M.Ascano, R.Diaz-Avalos, A.Y.Park, S.A.Juranek, W.J.Rice, Q.Yin, C.V.Robinson, T.Tuschl, and D.J.Patel (2011).
Multimeric assembly and biochemical characterization of the Trax-translin endonuclease complex.
  Nat Struct Mol Biol, 18, 658-664.
PDB code: 3riu
20539312 A.Boland, F.Tritschler, S.Heimstädt, E.Izaurralde, and O.Weichenrieder (2010).
Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein.
  EMBO Rep, 11, 522-527.
PDB code: 2xdy
20485810 A.Somoza, M.Terrazas, and R.Eritja (2010).
Modified siRNAs for the study of the PAZ domain.
  Chem Commun (Camb), 46, 4270-4272.  
  20359337 B.Robertson, A.B.Dalby, J.Karpilow, A.Khvorova, D.Leake, and A.Vermeulen (2010).
Specificity and functionality of microRNA inhibitors.
  Silence, 1, 10.  
20634804 C.R.Faehnle, and L.Joshua-Tor (2010).
Argonaute MID domain takes centre stage.
  EMBO Rep, 11, 564-565.  
20620952 C.Shin, J.W.Nam, K.K.Farh, H.R.Chiang, A.Shkumatava, and D.P.Bartel (2010).
Expanding the microRNA targeting code: functional sites with centered pairing.
  Mol Cell, 38, 789-802.  
20921270 D.B.Munafó, and G.B.Robb (2010).
Optimization of enzymatic reaction conditions for generating representative pools of cDNA from small RNA.
  RNA, 16, 2537-2552.  
20505670 F.Frank, N.Sonenberg, and B.Nagar (2010).
Structural basis for 5'-nucleotide base-specific recognition of guide RNA by human AGO2.
  Nature, 465, 818-822.
PDB codes: 3luc 3lud 3lug 3luh 3luj 3luk
20142471 F.Ibrahim, L.A.Rymarquis, E.J.Kim, J.Becker, E.Balassa, P.J.Green, and H.Cerutti (2010).
Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas.
  Proc Natl Acad Sci U S A, 107, 3906-3911.  
20661255 J.Krol, I.Loedige, and W.Filipowicz (2010).
The widespread regulation of microRNA biogenesis, function and decay.
  Nat Rev Genet, 11, 597-610.  
  20226069 J.S.Parker (2010).
How to slice: snapshots of Argonaute in action.
  Silence, 1, 3.  
20562854 J.T.Cuperus, A.Carbonell, N.Fahlgren, H.Garcia-Ruiz, R.T.Burke, A.Takeda, C.M.Sullivan, S.D.Gilbert, T.A.Montgomery, and J.C.Carrington (2010).
Unique functionality of 22-nt miRNAs in triggering RDR6-dependent siRNA biogenesis from target transcripts in Arabidopsis.
  Nat Struct Mol Biol, 17, 997.  
20717561 J.W.Gaynor, B.J.Campbell, and R.Cosstick (2010).
RNA interference: a chemist's perspective.
  Chem Soc Rev, 39, 4169-4184.  
20523899 L.Braun, D.Cannella, P.Ortet, M.Barakat, C.F.Sautel, S.Kieffer, J.Garin, O.Bastien, O.Voinnet, and M.A.Hakimi (2010).
A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii.
  PLoS Pathog, 6, e1000920.  
20371350 M.Hafner, M.Landthaler, L.Burger, M.Khorshid, J.Hausser, P.Berninger, A.Rothballer, M.Ascano, A.C.Jungkamp, M.Munschauer, A.Ulrich, G.S.Wardle, S.Dewell, M.Zavolan, and T.Tuschl (2010).
Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP.
  Cell, 141, 129-141.  
21095591 M.P.Rychlik, H.Chon, S.M.Cerritelli, P.Klimek, R.J.Crouch, and M.Nowotny (2010).
Crystal structures of RNase H2 in complex with nucleic acid reveal the mechanism of RNA-DNA junction recognition and cleavage.
  Mol Cell, 40, 658-670.
PDB codes: 3o3f 3o3g 3o3h
20533884 M.R.Fabian, N.Sonenberg, and W.Filipowicz (2010).
Regulation of mRNA translation and stability by microRNAs.
  Annu Rev Biochem, 79, 351-379.  
20726859 P.B.Kwak, S.Iwasaki, and Y.Tomari (2010).
The microRNA pathway and cancer.
  Cancer Sci, 101, 2309-2315.  
20062058 S.Djuranovic, M.K.Zinchenko, J.K.Hur, A.Nahvi, J.L.Brunelle, E.J.Rogers, and R.Green (2010).
Allosteric regulation of Argonaute proteins by miRNAs.
  Nat Struct Mol Biol, 17, 144-150.  
20605501 S.Iwasaki, M.Kobayashi, M.Yoda, Y.Sakaguchi, S.Katsuma, T.Suzuki, and Y.Tomari (2010).
Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes.
  Mol Cell, 39, 292-299.  
20558712 S.L.Ameres, M.D.Horwich, J.H.Hung, J.Xu, M.Ghildiyal, Z.Weng, and P.D.Zamore (2010).
Target RNA-directed trimming and tailing of small silencing RNAs.
  Science, 328, 1534-1539.  
  20230614 S.L.Ameres, and R.Fukunaga (2010).
Riding in silence: a little snowboarding, a lot of small RNAs.
  Silence, 1, 8.  
20043313 S.Shukla, C.S.Sumaria, and P.I.Pradeepkumar (2010).
Exploring chemical modifications for siRNA therapeutics: a structural and functional outlook.
  ChemMedChem, 5, 328-349.  
20686687 Y.Wang, Y.Li, Z.Ma, W.Yang, and C.Ai (2010).
Mechanism of microRNA-target interaction: molecular dynamics simulations and thermodynamics analysis.
  PLoS Comput Biol, 6, e1000866.  
19945373 J.van der Oost, and S.J.Brouns (2009).
RNAi: prokaryotes get in on the act.
  Cell, 139, 863-865.  
19953720 R.David (2009).
Circadian rhythms: Calibrating the clock.
  Nat Rev Mol Cell Biol, 10, 816.  
19812664 S.Bouasker, and M.J.Simard (2009).
Structural biology: Tracing Argonaute binding.
  Nature, 461, 743-744.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer