spacer
spacer

PDBsum entry 2snm

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
2snm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
135 a.a. *
Ligands
THP
Metals
_CA
Waters ×41
* Residue conservation analysis
PDB id:
2snm
Name: Hydrolase
Title: In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core
Structure: Staphylococcal nuclease. Chain: a. Engineered: yes. Mutation: yes
Source: Staphylococcus aureus. Organism_taxid: 1280
Resolution:
1.97Å     R-factor:   0.183    
Authors: W.E.Stites,A.G.Gittis,E.E.Lattman,D.Shortle
Key ref: W.E.Stites et al. (1991). In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core. J Mol Biol, 221, 7. PubMed id: 1920420
Date:
03-Apr-91     Release date:   15-Jan-93    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00644  (NUC_STAAU) -  Thermonuclease from Staphylococcus aureus
Seq:
Struc:
231 a.a.
135 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.3.1.31.1  - micrococcal nuclease.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endonucleolytic cleavage to nucleoside 3'-phosphates and 3'-phosphooligonucleotide end-products.

 

 
J Mol Biol 221:7 (1991)
PubMed id: 1920420  
 
 
In a staphylococcal nuclease mutant the side-chain of a lysine replacing valine 66 is fully buried in the hydrophobic core.
W.E.Stites, A.G.Gittis, E.E.Lattman, D.Shortle.
 
  ABSTRACT  
 
The crystal structure of the staphylococcal nuclease mutant V66K, in which valine 66 is replaced by lysine, has been solved at 1.97 A resolution. Unlike lysine residues in previously reported protein structures, this residue appears to bury its side-chain in the hydrophobic core without salt bridging, hydrogen bonding or other forms of electrostatic stabilization. Solution studies of the free energy of denaturation, delta GH2O, show marked pH dependence and clearly indicate that the lysine residue must be deprotonated in the folded state. V66K is highly unstable at neutral pH but only modestly less stable than the wild-type protein at high pH. The pH dependence of stability for V66K, in combination with similar measurements for the wild-type protein, allowed determination of the pKa values of the lysine in both the denatured and native forms. The epsilon-amine of this residue has a pKa value in the denatured state of 10.2, but in the native state it must be 6.4 or lower. The epsilon-amine is thus deprotonated in the folded molecule. These values enabled an estimation of the epsilon-amine's relative change in free energy of solvation between solvent and the protein interior at 5.1 kcal/mol or greater. This implies that the value of the dielectric constant of the protein interior must be less than 12.8. Lysine is usually found with the methylene groups of its side-chain partly buried but is nevertheless considered a hydrophilic surface residue. It would appear that the high pKa value of lysine, which gives it a positive charge at physiological pH, is the primary reason for its almost exclusive confinement to the surface proteins. When deprotonated, this amino acid type can be fully incorporated into the hydrophobic core.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21389271 D.G.Isom, C.A.Castañeda, B.R.Cannon, and B.García-Moreno (2011).
Large shifts in pKa values of lysine residues buried inside a protein.
  Proc Natl Acad Sci U S A, 108, 5260-5265.  
20798341 D.G.Isom, C.A.Castañeda, B.R.Cannon, P.D.Velu, and B.García-Moreno E (2010).
Charges in the hydrophobic interior of proteins.
  Proc Natl Acad Sci U S A, 107, 16096-16100.  
19056729 C.Carrasco-López, C.Godoy, B.de Las Rivas, G.Fernández-Lorente, J.M.Palomo, J.M.Guisán, R.Fernández-Lafuente, M.Martínez-Ripoll, and J.A.Hermoso (2009).
Activation of bacterial thermoalkalophilic lipases is spurred by dramatic structural rearrangements.
  J Biol Chem, 284, 4365-4372.
PDB code: 2w22
19241472 F.Milletti, L.Storchi, and G.Cruciani (2009).
Predicting protein pK(a) by environment similarity.
  Proteins, 76, 484-495.  
19892738 G.Xu, S.B.Shin, and S.R.Jaffrey (2009).
Global profiling of protease cleavage sites by chemoselective labeling of protein N-termini.
  Proc Natl Acad Sci U S A, 106, 19310-19315.  
19458715 M.C.Ho, J.F.Ménétret, H.Tsuruta, and K.N.Allen (2009).
The origin of the electrostatic perturbation in acetoacetate decarboxylase.
  Nature, 459, 393-397.
PDB codes: 3bgt 3bh2 3bh3
  19177365 M.Sagermann, R.R.Chapleau, E.DeLorimier, and M.Lei (2009).
Using affinity chromatography to engineer and characterize pH-dependent protein switches.
  Protein Sci, 18, 217-228.
PDB codes: 3crt 3cru 3d0z
19004768 D.G.Isom, B.R.Cannon, C.A.Castañeda, A.Robinson, and B.García-Moreno (2008).
High tolerance for ionizable residues in the hydrophobic interior of proteins.
  Proc Natl Acad Sci U S A, 105, 17784-17788.  
18178652 J.L.Schlessman, C.Abe, A.Gittis, D.A.Karp, M.A.Dolan, and B.García-Moreno E (2008).
Crystallographic study of hydration of an internal cavity in engineered proteins with buried polar or ionizable groups.
  Biophys J, 94, 3208-3216.
PDB codes: 2pw5 2pw7 2pyk 2pzt 2pzu 2pzw
18814170 L.Mitra, J.B.Rouget, B.Garcia-Moreno, C.A.Royer, and R.Winter (2008).
Towards a quantitative understanding of protein hydration and volumetric properties.
  Chemphyschem, 9, 2715-2721.  
18369193 M.J.Harms, J.L.Schlessman, M.S.Chimenti, G.R.Sue, A.Damjanović, and B.García-Moreno (2008).
A buried lysine that titrates with a normal pKa: role of conformational flexibility at the protein-water interface as a determinant of pKa values.
  Protein Sci, 17, 833-845.
PDB code: 2rks
18069664 M.Schmidt Am Busch, A.Lopes, D.Mignon, and T.Simonson (2008).
Computational protein design: software implementation, parameter optimization, and performance of a simple model.
  J Comput Chem, 29, 1092-1102.  
18184701 Q.Wang, F.Cheng, M.Lu, X.Tian, and J.Ma (2008).
Crystal structure of unliganded influenza B virus hemagglutinin.
  J Virol, 82, 3011-3020.
PDB code: 3bt6
17172297 D.A.Karp, A.G.Gittis, M.R.Stahley, C.A.Fitch, W.E.Stites, and B.García-Moreno E (2007).
High apparent dielectric constant inside a protein reflects structural reorganization coupled to the ionization of an internal Asp.
  Biophys J, 92, 2041-2053.
PDB code: 2oxp
17544203 D.M.LeMaster, J.S.Anderson, and G.Hernández (2007).
Spatial distribution of dielectric shielding in the interior of Pyrococcus furiosus rubredoxin as sampled in the subnanosecond timeframe by hydrogen exchange.
  Biophys Chem, 129, 43-48.  
17656580 R.J.Johnson, S.R.Lin, and R.T.Raines (2007).
Genetic selection reveals the role of a buried, conserved polar residue.
  Protein Sci, 16, 1609-1616.  
15971206 A.Damjanović, B.García-Moreno, E.E.Lattman, and A.E.García (2005).
Molecular dynamics study of water penetration in staphylococcal nuclease.
  Proteins, 60, 433-449.  
15376253 B.Kuhn, P.A.Kollman, and M.Stahl (2004).
Prediction of pKa shifts in proteins using a combination of molecular mechanical and continuum solvent calculations.
  J Comput Chem, 25, 1865-1872.  
15229877 H.Feng, and Y.Bai (2004).
Repacking of hydrophobic residues in a stable mutant of apocytochrome b562 selected by phage-display and proteolysis.
  Proteins, 56, 426-429.  
15010542 N.Pokala, and T.M.Handel (2004).
Energy functions for protein design I: efficient and accurate continuum electrostatics and solvation.
  Protein Sci, 13, 925-936.  
15377517 V.P.Denisov, J.L.Schlessman, B.García-Moreno E, and B.Halle (2004).
Stabilization of internal charges in a protein: water penetration or conformational change?
  Biophys J, 87, 3982-3994.
PDB code: 1u9r
12571243 K.Lim, A.Tempczyk, N.Bonander, J.Toedt, A.Howard, E.Eisenstein, and O.Herzberg (2003).
A catalytic mechanism for D-Tyr-tRNATyr deacylase based on the crystal structure of Hemophilus influenzae HI0670.
  J Biol Chem, 278, 13496-13502.
PDB code: 1j7g
12581214 P.Pattanaik, G.Ravindra, C.Sengupta, K.Maithal, P.Balaram, and H.Balaram (2003).
Unusual fluorescence of W168 in Plasmodium falciparum triosephosphate isomerase, probed by single-tryptophan mutants.
  Eur J Biochem, 270, 745-756.  
14635121 S.Balaji, S.Aruna, and N.Srinivasan (2003).
Tolerance to the substitution of buried apolar residues by charged residues in the homologous protein structures.
  Proteins, 53, 783-791.  
12023252 C.A.Fitch, D.A.Karp, K.K.Lee, W.E.Stites, E.E.Lattman, and B.García-Moreno E (2002).
Experimental pK(a) values of buried residues: analysis with continuum methods and role of water penetration.
  Biophys J, 82, 3289-3304.  
11969427 K.K.Lee, C.A.Fitch, J.T.Lecomte, and B.García-Moreno E (2002).
Electrostatic effects in highly charged proteins: salt sensitivity of pKa values of histidines in staphylococcal nuclease.
  Biochemistry, 41, 5656-5667.  
11266616 A.Ababou, and J.R.Desjarlais (2001).
Solvation energetics and conformational change in EF-hand proteins.
  Protein Sci, 10, 301-312.  
11484218 C.N.Schutz, and A.Warshel (2001).
What are the dielectric "constants" of proteins and how to validate electrostatic models?
  Proteins, 44, 400-417.  
11420436 V.V.Loladze, D.N.Ermolenko, and G.I.Makhatadze (2001).
Heat capacity changes upon burial of polar and nonpolar groups in proteins.
  Protein Sci, 10, 1343-1352.  
10785370 A.M.Lambeir, J.Backmann, J.Ruiz-Sanz, V.Filimonov, J.E.Nielsen, I.Kursula, B.V.Norledge, and R.K.Wierenga (2000).
The ionization of a buried glutamic acid is thermodynamically linked to the stability of Leishmania mexicana triose phosphate isomerase.
  Eur J Biochem, 267, 2516-2524.
PDB code: 1qds
10978180 C.M.Dupureur, and L.H.Conlan (2000).
A catalytically deficient active site variant of PvuII endonuclease binds Mg(II) ions.
  Biochemistry, 39, 10921-10927.  
10969021 J.J.Dwyer, A.G.Gittis, D.A.Karp, E.E.Lattman, D.S.Spencer, W.E.Stites, and B.García-Moreno E (2000).
High apparent dielectric constants in the interior of a protein reflect water penetration.
  Biophys J, 79, 1610-1620.  
11041844 K.K.Reiling, T.R.Pray, C.S.Craik, and R.M.Stroud (2000).
Functional consequences of the Kaposi's sarcoma-associated herpesvirus protease structure: regulation of activity and dimerization by conserved structural elements.
  Biochemistry, 39, 12796-12803.
PDB code: 1fl1
10692303 M.R.Gunner, M.A.Saleh, E.Cross, A.ud-Doula, and M.Wise (2000).
Backbone dipoles generate positive potentials in all proteins: origins and implications of the effect.
  Biophys J, 78, 1126-1144.  
11080642 T.Kajander, P.C.Kahn, S.H.Passila, D.C.Cohen, L.Lehtiö, W.Adolfsen, J.Warwicker, U.Schell, and A.Goldman (2000).
Buried charged surface in proteins.
  Structure, 8, 1203-1214.
PDB code: 1f9c
9890931 B.Gopal, S.S.Ray, R.S.Gokhale, H.Balaram, M.R.Murthy, and P.Balaram (1999).
Cavity-creating mutation at the dimer interface of Plasmodium falciparum triosephosphate isomerase: restoration of stability by disulfide cross-linking of subunits.
  Biochemistry, 38, 478-486.  
10387071 E.G.Alexov, and M.R.Gunner (1999).
Calculated protein and proton motions coupled to electron transfer: electron transfer from QA- to QB in bacterial photosynthetic reaction centers.
  Biochemistry, 38, 8253-8270.  
10195898 M.H.Cordes, N.P.Walsh, C.J.McKnight, and R.T.Sauer (1999).
Evolution of a protein fold in vitro.
  Science, 284, 325-328.
PDB code: 1qtg
9565642 C.Lee, M.N.Liang, K.M.Tate, J.D.Rabinowitz, C.Beeson, P.P.Jones, and H.M.McConnell (1998).
Evidence that the autoimmune antigen myelin basic protein (MBP) Ac1-9 binds towards one end of the major histocompatibility complex (MHC) cleft.
  J Exp Med, 187, 1505-1516.  
9819211 E.J.Hebert, A.Giletto, J.Sevcik, L.Urbanikova, K.S.Wilson, Z.Dauter, and C.N.Pace (1998).
Contribution of a conserved asparagine to the conformational stability of ribonucleases Sa, Ba, and T1.
  Biochemistry, 37, 16192-16200.
PDB code: 1box
9628726 W.R.Forsyth, M.K.Gilson, J.Antosiewicz, O.R.Jaren, and A.D.Robertson (1998).
Theoretical and experimental analysis of ionization equilibria in ovomucoid third domain.
  Biochemistry, 37, 8643-8652.  
9384561 A.Motta, P.Amodeo, P.Fucile, M.A.Castiglione Morelli, B.Bremnes, and O.Bakke (1997).
A new triple-stranded alpha-helical bundle in solution: the assembling of the cytosolic tail of MHC-associated invariant chain.
  Structure, 5, 1453-1464.  
9148939 B.A.Katz, and R.T.Cass (1997).
In crystals of complexes of streptavidin with peptide ligands containing the HPQ sequence the pKa of the peptide histidine is less than 3.0.
  J Biol Chem, 272, 13220-13228.
PDB codes: 1vwa 1vwb 1vwc 1vwd 1vwe 1vwf 1vwg 1vwh 1vwi 1vwj 1vwk 1vwl 1vwm 1vwn 1vwo 1vwp 1vwq 1vwr
9127946 B.García-Moreno, J.J.Dwyer, A.G.Gittis, E.E.Lattman, D.S.Spencer, and W.E.Stites (1997).
Experimental measurement of the effective dielectric in the hydrophobic core of a protein.
  Biophys Chem, 64, 211-224.  
9132026 L.C.Ma, and S.Anderson (1997).
Correlation between disulfide reduction and conformational unfolding in bovine pancreatic trypsin inhibitor.
  Biochemistry, 36, 3728-3736.  
8836107 C.M.Lukacs, J.Q.Zhong, M.I.Plotnick, H.Rubin, B.S.Cooperman, and D.W.Christianson (1996).
Arginine substitutions in the hinge region of antichymotrypsin affect serpin beta-sheet rearrangement.
  Nat Struct Biol, 3, 888-893.
PDB codes: 1ct3 2caa
8672483 J.Antosiewicz, J.A.McCammon, and M.K.Gilson (1996).
The determinants of pKas in proteins.
  Biochemistry, 35, 7819-7833.  
8924198 M.P.Byrne, C.A.Broomfield, and W.E.Stites (1996).
Mustard gas crosslinking of proteins through preferential alkylation of cysteines.
  J Protein Chem, 15, 131-136.  
  8976564 R.De Lorimier, H.W.Hellinga, and L.D.Spicer (1996).
NMR studies of structure, hydrogen exchange, and main-chain dynamics in a disrupted-core mutant of thioredoxin.
  Protein Sci, 5, 2552-2565.  
8943034 R.Varadarajan, H.A.Nagarajaram, and C.Ramakrishnan (1996).
A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence.
  Proc Natl Acad Sci U S A, 93, 13908-13913.  
7744875 A.L.Salvati, A.Lahm, G.Paonessa, G.Ciliberto, and C.Toniatti (1995).
Interleukin-6 (IL-6) antagonism by soluble IL-6 receptor alpha mutated in the predicted gp130-binding interface.
  J Biol Chem, 270, 12242-12249.  
7499197 M.Abul Qasim, M.R.Ranjbar, R.Wynn, S.Anderson, and M.Laskowski (1995).
Ionizable P1 residues in serine proteinase inhibitors undergo large pK shifts on complex formation.
  J Biol Chem, 270, 27419-27422.  
  8528079 R.Wynn, C.L.Anderson, F.M.Richards, and R.O.Fox (1995).
Interactions in nonnative and truncated forms of staphylococcal nuclease as indicated by mutational free energy changes.
  Protein Sci, 4, 1815-1823.  
7765172 E.P.Baldwin, and B.W.Matthews (1994).
Core-packing constraints, hydrophobicity and protein design.
  Curr Opin Biotechnol, 5, 396-402.  
7520590 F.J.Sigworth (1994).
Voltage gating of ion channels.
  Q Rev Biophys, 27, 1.  
  8003958 Z.S.Hendsch, and B.Tidor (1994).
Do salt bridges stabilize proteins? A continuum electrostatic analysis.
  Protein Sci, 3, 211-226.  
8234242 D.J.Weber, E.H.Serpersu, A.G.Gittis, E.E.Lattman, and A.S.Mildvan (1993).
NMR docking of the competitive inhibitor thymidine 3',5'-diphosphate into the X-ray structure of staphylococcal nuclease.
  Proteins, 17, 20-35.  
8058892 F.M.Richards, and W.A.Lim (1993).
An analysis of packing in the protein folding problem.
  Q Rev Biophys, 26, 423-498.  
8456096 M.K.Gilson (1993).
Multiple-site titration and molecular modeling: two rapid methods for computing energies and forces for ionizable groups in proteins.
  Proteins, 15, 266-282.  
1368433 C.Eigenbrot, and A.A.Kossiakoff (1992).
Structural consequences of mutation.
  Curr Opin Biotechnol, 3, 333-337.  
1518925 D.Shortle (1992).
Mutational studies of protein structures and their stabilities.
  Q Rev Biophys, 25, 205-250.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer