 |
PDBsum entry 2nyt
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.5.4.36
- mRNA(cytosine(6666)) deaminase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
cytidine6666 in apoB mRNA + H2O + H+ = uridine6666 in apoB mRNA + NH4+
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
445:447-451
(2007)
|
|
PubMed id:
|
|
|
|
|
| |
|
The APOBEC-2 crystal structure and functional implications for the deaminase AID.
|
|
C.Prochnow,
R.Bransteitter,
M.G.Klein,
M.F.Goodman,
X.S.Chen.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
APOBEC-2 (APO2) belongs to the family of apolipoprotein B messenger RNA-editing
enzyme catalytic (APOBEC) polypeptides, which deaminates mRNA and
single-stranded DNA. Different APOBEC members use the same deamination activity
to achieve diverse human biological functions. Deamination by an APOBEC protein
called activation-induced cytidine deaminase (AID) is critical for generating
high-affinity antibodies, and deamination by APOBEC-3 proteins can inhibit
retrotransposons and the replication of retroviruses such as human
immunodeficiency virus and hepatitis B virus. Here we report the crystal
structure of APO2. APO2 forms a rod-shaped tetramer that differs markedly from
the square-shaped tetramer of the free nucleotide cytidine deaminase, with which
APOBEC proteins share considerable sequence homology. In APO2, two long
alpha-helices of a monomer structure prevent the formation of a square-shaped
tetramer and facilitate formation of the rod-shaped tetramer via head-to-head
interactions of two APO2 dimers. Extensive sequence homology among APOBEC family
members allows us to test APO2 structure-based predictions using AID. We show
that AID deamination activity is impaired by mutations predicted to interfere
with oligomerization and substrate access. The structure suggests how mutations
in patients with hyper-IgM-2 syndrome inactivate AID, resulting in defective
antibody maturation.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2: The APO2 active site. a, The APO2 active sites are
accessible to DNA/RNA. Red spheres represent Zn. b, The fntCDA
active site is accessible only to free nucleotides. c, The outer
APO2 active sites show Zn coordination (yellow dashed lines) by
three residues (H98, C128, C131) and a water molecule (blue
sphere). d, The middle APO2 active centre sites show Zn
coordination by a fourth residue, E60. e, In the 1'-hairpin
structure, the hydrophobic ring of Y61 interacts with the
guanidine group of R65, stabilizing the conformation. f, In the
h1/ 1
loop, the E60 coordinates with Zn. Y61 now rotates away from R65
and interacts with R57, facilitating the disruption of the 1'-hairpin
and stabilizing the loop conformation. g, Superimposed monomers
show that the h1/ 1
loop (purple) is pulled down 8.5
Štowards the active site owing to the E60–Zn bond
formation.
|
 |
Figure 4.
Figure 4: AID HIGM-2 mutations. Figure 4 : AID
HIGM-2 mutations. Unfortunately we are unable to provide
accessible alternative text for this. If you require
assistance to access this image, or to obtain a text
description, please contact npg@nature.com-
a, Alignment of mutated residues of AID from HIGM-2 patients
with the corresponding residues in APO2, showing high sequence
conservation. b, Mapping the residues in AID HIGM-2 mutations
(R112, L113, N168) to the tetramer interface as modelled from
the APO2 structure. c, Mapping the AID HIGM-2 mutations, S83 and
S85, near the active site. d, Mapping the AID mutations, K16,
Y114/F115 and C116 (in green), to the exposed surface of an
outer monomer. The HIGM-2 AID residues (R112, L113, N168, in
yellow), which are at the tetramer interface (b), are also
located on this exposed surface. e, Mapping of AID HIGM-2
mutations, W80, L106, M139 and F151, to the interior core
structure.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2007,
445,
447-451)
copyright 2007.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
S.Kitamura,
H.Ode,
M.Nakashima,
M.Imahashi,
Y.Naganawa,
T.Kurosawa,
Y.Yokomaku,
T.Yamane,
N.Watanabe,
A.Suzuki,
W.Sugiura,
and
Y.Iwatani
(2012).
The APOBEC3C crystal structure and the interface for HIV-1 Vif binding.
|
| |
Nat Struct Mol Biol,
19,
1005-1010.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Knoop
(2011).
When you can't trust the DNA: RNA editing changes transcript sequences.
|
| |
Cell Mol Life Sci,
68,
567-586.
|
 |
|
|
|
|
 |
A.Orthwein,
A.M.Patenaude,
e.l. .B.Affar,
A.Lamarre,
J.C.Young,
and
J.M.Di Noia
(2010).
Regulation of activation-induced deaminase stability and antibody gene diversification by Hsp90.
|
| |
J Exp Med,
207,
2751-2765.
|
 |
|
|
|
|
 |
A.Zhen,
T.Wang,
K.Zhao,
Y.Xiong,
and
X.F.Yu
(2010).
A single amino acid difference in human APOBEC3H variants determines HIV-1 Vif sensitivity.
|
| |
J Virol,
84,
1902-1911.
|
 |
|
|
|
|
 |
C.Etard,
U.Roostalu,
and
U.Strähle
(2010).
Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos.
|
| |
J Cell Biol,
189,
527-539.
|
 |
|
|
|
|
 |
D.Lavens,
F.Peelman,
J.Van der Heyden,
I.Uyttendaele,
D.Catteeuw,
A.Verhee,
B.Van Schoubroeck,
J.Kurth,
S.Hallenberger,
R.Clayton,
and
J.Tavernier
(2010).
Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis.
|
| |
Nucleic Acids Res,
38,
1902-1912.
|
 |
|
|
|
|
 |
F.Autore,
J.R.Bergeron,
M.H.Malim,
F.Fraternali,
and
H.Huthoff
(2010).
Rationalisation of the differences between APOBEC3G structures from crystallography and NMR studies by molecular dynamics simulations.
|
| |
PLoS One,
5,
e11515.
|
 |
|
|
|
|
 |
I.U.Heinemann,
D.Söll,
and
L.Randau
(2010).
Transfer RNA processing in archaea: unusual pathways and enzymes.
|
| |
FEBS Lett,
584,
303-309.
|
 |
|
|
|
|
 |
J.S.Albin,
and
R.S.Harris
(2010).
Interactions of host APOBEC3 restriction factors with HIV-1 in vivo: implications for therapeutics.
|
| |
Expert Rev Mol Med,
12,
e4.
|
 |
|
|
|
|
 |
L.Chelico,
C.Prochnow,
D.A.Erie,
X.S.Chen,
and
M.F.Goodman
(2010).
Structural model for deoxycytidine deamination mechanisms of the HIV-1 inactivation enzyme APOBEC3G.
|
| |
J Biol Chem,
285,
16195-16205.
|
 |
|
|
|
|
 |
M.Wang,
C.Rada,
and
M.S.Neuberger
(2010).
Altering the spectrum of immunoglobulin V gene somatic hypermutation by modifying the active site of AID.
|
| |
J Exp Med,
207,
141.
|
 |
|
|
|
|
 |
S.M.Shandilya,
M.N.Nalam,
E.A.Nalivaika,
P.J.Gross,
J.C.Valesano,
K.Shindo,
M.Li,
M.Munson,
W.E.Royer,
E.Harjes,
T.Kono,
H.Matsuo,
R.S.Harris,
M.Somasundaran,
and
C.A.Schiffer
(2010).
Crystal structure of the APOBEC3G catalytic domain reveals potential oligomerization interfaces.
|
| |
Structure,
18,
28-38.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Wissing,
N.L.Galloway,
and
W.C.Greene
(2010).
HIV-1 Vif versus the APOBEC3 cytidine deaminases: an intracellular duel between pathogen and host restriction factors.
|
| |
Mol Aspects Med,
31,
383-397.
|
 |
|
|
|
|
 |
Y.Sato,
H.C.Probst,
R.Tatsumi,
Y.Ikeuchi,
M.S.Neuberger,
and
C.Rada
(2010).
Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy.
|
| |
J Biol Chem,
285,
7111-7118.
|
 |
|
|
|
|
 |
A.Furukawa,
T.Nagata,
A.Matsugami,
Y.Habu,
R.Sugiyama,
F.Hayashi,
N.Kobayashi,
S.Yokoyama,
H.Takaku,
and
M.Katahira
(2009).
Structure, interaction and real-time monitoring of the enzymatic reaction of wild-type APOBEC3G.
|
| |
EMBO J,
28,
440-451.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.M.Patenaude,
A.Orthwein,
Y.Hu,
V.A.Campo,
B.Kavli,
A.Buschiazzo,
and
J.M.Di Noia
(2009).
Active nuclear import and cytoplasmic retention of activation-induced deaminase.
|
| |
Nat Struct Mol Biol,
16,
517-527.
|
 |
|
|
|
|
 |
B.Stauch,
H.Hofmann,
M.Perkovic,
M.Weisel,
F.Kopietz,
K.Cichutek,
C.Münk,
and
G.Schneider
(2009).
Model structure of APOBEC3C reveals a binding pocket modulating ribonucleic acid interaction required for encapsidation.
|
| |
Proc Natl Acad Sci U S A,
106,
12079-12084.
|
 |
|
|
|
|
 |
E.Harjes,
P.J.Gross,
K.M.Chen,
Y.Lu,
K.Shindo,
R.Nowarski,
J.D.Gross,
M.Kotler,
R.S.Harris,
and
H.Matsuo
(2009).
An extended structure of the APOBEC3G catalytic domain suggests a unique holoenzyme model.
|
| |
J Mol Biol,
389,
819-832.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.van Maldegem,
F.A.Scheeren,
R.Aarti Jibodh,
R.J.Bende,
H.Jacobs,
and
C.J.van Noesel
(2009).
AID splice variants lack deaminase activity.
|
| |
Blood,
113,
1862.
|
 |
|
|
|
|
 |
H.Huthoff,
F.Autore,
S.Gallois-Montbrun,
F.Fraternali,
and
M.H.Malim
(2009).
RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1.
|
| |
PLoS Pathog,
5,
e1000330.
|
 |
|
|
|
|
 |
I.Narvaiza,
D.C.Linfesty,
B.N.Greener,
Y.Hakata,
D.J.Pintel,
E.Logue,
N.R.Landau,
and
M.D.Weitzman
(2009).
Deaminase-independent inhibition of parvoviruses by the APOBEC3A cytidine deaminase.
|
| |
PLoS Pathog,
5,
e1000439.
|
 |
|
|
|
|
 |
J.D.Salter,
J.Krucinska,
J.Raina,
H.C.Smith,
and
J.E.Wedekind
(2009).
A hydrodynamic analysis of APOBEC3G reveals a monomer-dimer-tetramer self-association that has implications for anti-HIV function.
|
| |
Biochemistry,
48,
10685-10687.
|
 |
|
|
|
|
 |
J.W.Rausch,
L.Chelico,
M.F.Goodman,
and
S.F.Le Grice
(2009).
Dissecting APOBEC3G substrate specificity by nucleoside analog interference.
|
| |
J Biol Chem,
284,
7047-7058.
|
 |
|
|
|
|
 |
L.Chelico,
P.Pham,
J.Petruska,
and
M.F.Goodman
(2009).
Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G.
|
| |
J Biol Chem,
284,
27761-27765.
|
 |
|
|
|
|
 |
L.Chelico,
P.Pham,
and
M.F.Goodman
(2009).
Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
583-593.
|
 |
|
|
|
|
 |
L.Randau,
B.J.Stanley,
A.Kohlway,
S.Mechta,
Y.Xiong,
and
D.Söll
(2009).
A cytidine deaminase edits C to U in transfer RNAs in Archaea.
|
| |
Science,
324,
657-659.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.H.Malim
(2009).
APOBEC proteins and intrinsic resistance to HIV-1 infection.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
675-687.
|
 |
|
|
|
|
 |
R.Bransteitter,
C.Prochnow,
and
X.S.Chen
(2009).
The current structural and functional understanding of APOBEC deaminases.
|
| |
Cell Mol Life Sci,
66,
3137-3147.
|
 |
|
|
|
|
 |
T.MacCarthy,
S.L.Kalis,
S.Roa,
P.Pham,
M.F.Goodman,
M.D.Scharff,
and
A.Bergman
(2009).
V-region mutation in vitro, in vivo, and in silico reveal the importance of the enzymatic properties of AID and the sequence environment.
|
| |
Proc Natl Acad Sci U S A,
106,
8629-8634.
|
 |
|
|
|
|
 |
V.Petit,
J.P.Vartanian,
and
S.Wain-Hobson
(2009).
Powerful mutators lurking in the genome.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
705-715.
|
 |
|
|
|
|
 |
Y.Bulliard,
P.Turelli,
U.F.Röhrig,
V.Zoete,
B.Mangeat,
O.Michielin,
and
D.Trono
(2009).
Functional analysis and structural modeling of human APOBEC3G reveal the role of evolutionarily conserved elements in the inhibition of human immunodeficiency virus type 1 infection and Alu transposition.
|
| |
J Virol,
83,
12611-12621.
|
 |
|
|
|
|
 |
Y.Iwatani,
D.S.Chan,
L.Liu,
H.Yoshii,
J.Shibata,
N.Yamamoto,
J.G.Levin,
A.M.Gronenborn,
and
W.Sugiura
(2009).
HIV-1 Vif-mediated ubiquitination/degradation of APOBEC3G involves four critical lysine residues in its C-terminal domain.
|
| |
Proc Natl Acad Sci U S A,
106,
19539-19544.
|
 |
|
|
|
|
 |
Y.L.Chiu,
and
W.C.Greene
(2009).
APOBEC3G: an intracellular centurion.
|
| |
Philos Trans R Soc Lond B Biol Sci,
364,
689-703.
|
 |
|
|
|
|
 |
J.U.Peled,
F.L.Kuang,
M.D.Iglesias-Ussel,
S.Roa,
S.L.Kalis,
M.F.Goodman,
and
M.D.Scharff
(2008).
The biochemistry of somatic hypermutation.
|
| |
Annu Rev Immunol,
26,
481-511.
|
 |
|
|
|
|
 |
K.M.Chen,
E.Harjes,
P.J.Gross,
A.Fahmy,
Y.Lu,
K.Shindo,
R.S.Harris,
and
H.Matsuo
(2008).
Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G.
|
| |
Nature,
452,
116-119.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Shirakawa,
A.Takaori-Kondo,
M.Yokoyama,
T.Izumi,
M.Matsui,
K.Io,
T.Sato,
H.Sato,
and
T.Uchiyama
(2008).
Phosphorylation of APOBEC3G by protein kinase A regulates its interaction with HIV-1 Vif.
|
| |
Nat Struct Mol Biol,
15,
1184-1191.
|
 |
|
|
|
|
 |
L.Chelico,
E.J.Sacho,
D.A.Erie,
and
M.F.Goodman
(2008).
A model for oligomeric regulation of APOBEC3G cytosine deaminase-dependent restriction of HIV.
|
| |
J Biol Chem,
283,
13780-13791.
|
 |
|
|
|
|
 |
L.G.Holden,
C.Prochnow,
Y.P.Chang,
R.Bransteitter,
L.Chelico,
U.Sen,
R.C.Stevens,
M.F.Goodman,
and
X.S.Chen
(2008).
Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications.
|
| |
Nature,
456,
121-124.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.P.Bennett,
J.D.Salter,
X.Liu,
J.E.Wedekind,
and
H.C.Smith
(2008).
APOBEC3G subunits self-associate via the C-terminal deaminase domain.
|
| |
J Biol Chem,
283,
33329-33336.
|
 |
|
|
|
|
 |
R.P.Bennett,
V.Presnyak,
J.E.Wedekind,
and
H.C.Smith
(2008).
Nuclear Exclusion of the HIV-1 host defense factor APOBEC3G requires a novel cytoplasmic retention signal and is not dependent on RNA binding.
|
| |
J Biol Chem,
283,
7320-7327.
|
 |
|
|
|
|
 |
S.G.Conticello
(2008).
The AID/APOBEC family of nucleic acid mutators.
|
| |
Genome Biol,
9,
229.
|
 |
|
|
|
|
 |
S.S.Brar,
E.J.Sacho,
I.Tessmer,
D.L.Croteau,
D.A.Erie,
and
M.Diaz
(2008).
Activation-induced deaminase, AID, is catalytically active as a monomer on single-stranded DNA.
|
| |
DNA Repair (Amst),
7,
77-87.
|
 |
|
|
|
|
 |
W.Zhang,
M.Huang,
T.Wang,
L.Tan,
C.Tian,
X.Yu,
W.Kong,
and
X.F.Yu
(2008).
Conserved and non-conserved features of HIV-1 and SIVagm Vif mediated suppression of APOBEC3 cytidine deaminases.
|
| |
Cell Microbiol,
10,
1662-1675.
|
 |
|
|
|
|
 |
Y.L.Chiu,
and
W.C.Greene
(2008).
The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements.
|
| |
Annu Rev Immunol,
26,
317-353.
|
 |
|
|
|
|
 |
D.H.Nguyen,
S.Gummuluru,
and
J.Hu
(2007).
Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G.
|
| |
J Virol,
81,
4465-4472.
|
 |
|
|
|
|
 |
G.Teng,
and
F.N.Papavasiliou
(2007).
Immunoglobulin somatic hypermutation.
|
| |
Annu Rev Genet,
41,
107-120.
|
 |
|
|
|
|
 |
H.Huthoff,
and
M.H.Malim
(2007).
Identification of amino acid residues in APOBEC3G required for regulation by human immunodeficiency virus type 1 Vif and Virion encapsidation.
|
| |
J Virol,
81,
3807-3815.
|
 |
|
|
|
|
 |
K.M.Chen,
N.Martemyanova,
Y.Lu,
K.Shindo,
H.Matsuo,
and
R.S.Harris
(2007).
Extensive mutagenesis experiments corroborate a structural model for the DNA deaminase domain of APOBEC3G.
|
| |
FEBS Lett,
581,
4761-4766.
|
 |
|
|
|
|
 |
M.M.Sousa,
H.E.Krokan,
and
G.Slupphaug
(2007).
DNA-uracil and human pathology.
|
| |
Mol Aspects Med,
28,
276-306.
|
 |
|
|
|
|
 |
S.G.Conticello,
M.A.Langlois,
and
M.S.Neuberger
(2007).
Insights into DNA deaminases.
|
| |
Nat Struct Mol Biol,
14,
7-9.
|
 |
|
|
|
|
 |
Z.Xu,
E.J.Pone,
A.Al-Qahtani,
S.R.Park,
H.Zan,
and
P.Casali
(2007).
Regulation of aicda expression and AID activity: relevance to somatic hypermutation and class switch DNA recombination.
|
| |
Crit Rev Immunol,
27,
367-397.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |