spacer
spacer

PDBsum entry 2jg2

Go to PDB code: 
protein ligands metals links
Transferase PDB id
2jg2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
399 a.a. *
Ligands
PLP
Metals
_MG
Waters ×409
* Residue conservation analysis
PDB id:
2jg2
Name: Transferase
Title: High resolution structure of spt with plp internal aldimine
Structure: Serine palmitoyltransferase. Chain: a. Engineered: yes. Other_details: plp forming internal aldimine with lys265
Source: Pseudomonas paucimobilis. Organism_taxid: 13689. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.30Å     R-factor:   0.155     R-free:   0.185
Authors: B.A.Yard,L.G.Carter,K.A.Johnson,I.M.Overton,S.A.Mcmahon,M.Dorward, H.Liu,D.Puech,M.Oke,G.J.Barton,J.H.Naismith,D.J.Campopiano
Key ref:
B.A.Yard et al. (2007). The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J Mol Biol, 370, 870-886. PubMed id: 17559874 DOI: 10.1016/j.jmb.2007.04.086
Date:
07-Feb-07     Release date:   01-May-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q93UV0  (SPT_SPHPI) -  Serine palmitoyltransferase from Sphingomonas paucimobilis
Seq:
Struc:
420 a.a.
399 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.3.1.50  - serine C-palmitoyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-serine + hexadecanoyl-CoA + H+ = 3-oxosphinganine + CO2 + CoA
L-serine
+ hexadecanoyl-CoA
+ H(+)
= 3-oxosphinganine
+ CO2
+ CoA
      Cofactor: Pyridoxal 5'-phosphate
Pyridoxal 5'-phosphate
Bound ligand (Het Group name = PLP) matches with 93.75% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1016/j.jmb.2007.04.086 J Mol Biol 370:870-886 (2007)
PubMed id: 17559874  
 
 
The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis.
B.A.Yard, L.G.Carter, K.A.Johnson, I.M.Overton, M.Dorward, H.Liu, S.A.McMahon, M.Oke, D.Puech, G.J.Barton, J.H.Naismith, D.J.Campopiano.
 
  ABSTRACT  
 
Sphingolipid biosynthesis commences with the condensation of L-serine and palmitoyl-CoA to produce 3-ketodihydrosphingosine (KDS). This reaction is catalysed by the PLP-dependent enzyme serine palmitoyltransferase (SPT; EC 2.3.1.50), which is a membrane-bound heterodimer (SPT1/SPT2) in eukaryotes such as humans and yeast and a cytoplasmic homodimer in the Gram-negative bacterium Sphingomonas paucimobilis. Unusually, the outer membrane of S. paucimobilis contains glycosphingolipid (GSL) instead of lipopolysaccharide (LPS), and SPT catalyses the first step of the GSL biosynthetic pathway in this organism. We report here the crystal structure of the holo-form of S. paucimobilis SPT at 1.3 A resolution. The enzyme is a symmetrical homodimer with two active sites and a monomeric tertiary structure consisting of three domains. The PLP cofactor is bound covalently to a lysine residue (Lys265) as an internal aldimine/Schiff base and the active site is composed of residues from both subunits, located at the bottom of a deep cleft. Models of the human SPT1/SPT2 heterodimer were generated from the bacterial structure by bioinformatics analysis. Mutations in the human SPT1-encoding subunit have been shown to cause a neuropathological disease known as hereditary sensory and autonomic neuropathy type I (HSAN1). Our models provide an understanding of how these mutations may affect the activity of the enzyme.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Proposed reaction mechanism of SPT. (a) Transaldimination of internal aldimine (holo-SPT), I with L-serine to form external aldimine, II; (b) deprotonation of C^α by base to form quinonoid, III; (c) Claisen condensation to form putative β-ketoacid-aldimine complex, IV; (d) decarboxylation to form product quinonoid, V; (e) reprotonation of quinonoid to form product external aldimine, VI (f) release of product 3-ketodihydrosphingosine (KDS) and regeneration of I.
Figure 7.
Figure 7. Stereo view showing the proximity of the Asn100 residue of monomer B to the PLP cofactor of monomer A in the S. paucimobilis SPT homodimer. Monomer A is drawn in green and monomer B is drawn in blue. Asn100 of monomer B is shown in CPK. Using the sequence alignment in Figure 9, the S. paucimobilis SPT Asn100 residue maps to residue Cys133 on the SPT1 subunit of human SPT. Mutations at this residue C133W and C133Y are known to cause the autosomal disease hereditary sensory and autonomic neuropathy type I (HSAN1). The conserved residues His159 and His234 which interact directly with the PLP cofactor are also highlighted.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2007, 370, 870-886) copyright 2007.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20920666 A.Rotthier, M.Auer-Grumbach, K.Janssens, J.Baets, A.Penno, L.Almeida-Souza, K.Van Hoof, A.Jacobs, E.De Vriendt, B.Schlotter-Weigel, W.Löscher, P.Vondráček, P.Seeman, P.De Jonghe, P.Van Dijck, A.Jordanova, T.Hornemann, and V.Timmerman (2010).
Mutations in the SPTLC2 subunit of serine palmitoyltransferase cause hereditary sensory and autonomic neuropathy type I.
  Am J Hum Genet, 87, 513-522.  
20696404 F.Bourquin, H.Riezman, G.Capitani, and M.G.Grütter (2010).
Structure and function of sphingosine-1-phosphate lyase, a key enzyme of sphingolipid metabolism.
  Structure, 18, 1054-1065.
PDB codes: 3mad 3maf 3mau 3mbb 3mc6
20445930 J.Lowther, B.A.Yard, K.A.Johnson, L.G.Carter, V.T.Bhat, M.C.Raman, D.J.Clarke, B.Ramakers, S.A.McMahon, J.H.Naismith, and D.J.Campopiano (2010).
Inhibition of the PLP-dependent enzyme serine palmitoyltransferase by cycloserine: evidence for a novel decarboxylative mechanism of inactivation.
  Mol Biosyst, 6, 1682-1693.
PDB code: 2xbn
20578000 M.C.Raman, K.A.Johnson, D.J.Clarke, J.H.Naismith, and D.J.Campopiano (2010).
The serine palmitoyltransferase from Sphingomonas wittichii RW1: An interesting link to an unusual acyl carrier protein.
  Biopolymers, 93, 811-822.
PDB code: 2x8u
20419351 M.Oke, L.G.Carter, K.A.Johnson, H.Liu, S.A.McMahon, X.Yan, M.Kerou, N.D.Weikart, N.Kadi, M.A.Sheikh, S.Schmelz, M.Dorward, M.Zawadzki, C.Cozens, H.Falconer, H.Powers, I.M.Overton, C.A.van Niekerk, X.Peng, P.Patel, R.A.Garrett, D.Prangishvili, C.H.Botting, P.J.Coote, D.T.Dryden, G.J.Barton, U.Schwarz-Linek, G.L.Challis, G.L.Taylor, M.F.White, and J.H.Naismith (2010).
The Scottish Structural Proteomics Facility: targets, methods and outputs.
  J Struct Funct Genomics, 11, 167-180.
PDB codes: 2ivy 2jg5 2jg6 2vw8 2vxz 2wj9 2x0o 2x3d 2x3e 2x3f 2x3g 2x3l 2x3m 2x3n 2x3o 2x48 2x4g 2x4h 2x4i 2x4j 2x4k 2x4l 2x5c 2x5d 2x5e 2x5f 2x5g 2x5h 2x5p 2x5q 2x5r 2x5t 2x7b 2x7i 2xu2
19536577 A.A.Momin, H.Park, J.C.Allegood, M.Leipelt, S.L.Kelly, A.H.Merrill, and K.Hanada (2009).
Characterization of mutant serine palmitoyltransferase 1 in LY-B cells.
  Lipids, 44, 725-732.  
19416851 G.Han, S.D.Gupta, K.Gable, S.Niranjanakumari, P.Moitra, F.Eichler, R.H.Brown, J.M.Harmon, and T.M.Dunn (2009).
Identification of small subunits of mammalian serine palmitoyltransferase that confer distinct acyl-CoA substrate specificities.
  Proc Natl Acad Sci U S A, 106, 8186-8191.  
19376777 M.C.Raman, K.A.Johnson, B.A.Yard, J.Lowther, L.G.Carter, J.H.Naismith, and D.J.Campopiano (2009).
The External Aldimine Form of Serine Palmitoyltransferase: STRUCTURAL, KINETIC, AND SPECTROSCOPIC ANALYSIS OF THE WILD-TYPE ENZYME AND HSAN1 MUTANT MIMICS.
  J Biol Chem, 284, 17328-17339.
PDB codes: 2w8j 2w8t 2w8u 2w8v 2w8w
19575369 M.W.Ring, G.Schwär, and H.B.Bode (2009).
Biosynthesis of 2-hydroxy and iso-even fatty acids is connected to sphingolipid formation in myxobacteria.
  Chembiochem, 10, 2003-2010.  
19132419 T.Hornemann, A.Penno, S.Richard, G.Nicholson, F.S.van Dijk, A.Rotthier, V.Timmerman, and A.von Eckardstein (2009).
A systematic comparison of all mutations in hereditary sensory neuropathy type I (HSAN I) reveals that the G387A mutation is not disease associated.
  Neurogenetics, 10, 135-143.  
19562746 T.Lendrihas, J.Zhang, G.A.Hunter, and G.C.Ferreira (2009).
Arg-85 and Thr-430 in murine 5-aminolevulinate synthase coordinate acyl-CoA-binding and contribute to substrate specificity.
  Protein Sci, 18, 1847-1859.  
19346561 Y.Shiraiwa, H.Ikushiro, and H.Hayashi (2009).
Multifunctional role of his159in the catalytic reaction of serine palmitoyltransferase.
  J Biol Chem, 284, 15487-15495.  
19050750 E.Bieberich (2008).
Ceramide signaling in cancer and stem cells.
  Future Lipidol, 3, 273-300.  
18167344 H.Ikushiro, S.Fujii, Y.Shiraiwa, and H.Hayashi (2008).
Acceleration of the substrate Calpha deprotonation by an analogue of the second substrate palmitoyl-CoA in Serine Palmitoyltransferase.
  J Biol Chem, 283, 7542-7553.  
18285371 I.M.Overton, G.Padovani, M.A.Girolami, and G.J.Barton (2008).
ParCrys: a Parzen window density estimation approach to protein crystallization propensity prediction.
  Bioinformatics, 24, 901-907.  
18499644 S.T.Pruett, A.Bushnev, K.Hagedorn, M.Adiga, C.A.Haynes, M.C.Sullards, D.C.Liotta, and A.H.Merrill (2008).
Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols.
  J Lipid Res, 49, 1621-1639.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer