spacer
spacer

PDBsum entry 2ixb

Go to PDB code: 
protein ligands links
Hydrolase PDB id
2ixb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
426 a.a. *
Ligands
NAD
A2G
MRD ×2
MPD
Waters ×178
* Residue conservation analysis
PDB id:
2ixb
Name: Hydrolase
Title: Crystal structure of n-acetylgalactosaminidase in complex with galnac
Structure: Alpha-n-acetylgalactosaminidase. Chain: a. Engineered: yes
Source: Flavobacterium meningosepticum. Organism_taxid: 238. Atcc: 13253. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Expression_system_variant: rosetta plyss.
Resolution:
2.40Å     R-factor:   0.174     R-free:   0.200
Authors: G.Sulzenbacher,Q.P.Liu,Y.Bourne,B.Henrissat,H.Clausen
Key ref:
Q.P.Liu et al. (2007). Bacterial glycosidases for the production of universal red blood cells. Nat Biotechnol, 25, 454-464. PubMed id: 17401360 DOI: 10.1038/nbt1298
Date:
07-Jul-06     Release date:   10-Apr-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
A4Q8F7  (GH109_ELIME) -  Alpha-N-acetylgalactosaminidase from Elizabethkingia meningoseptica
Seq:
Struc:
444 a.a.
426 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.2.1.49  - alpha-N-acetylgalactosaminidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Hydrolysis of terminal non-reducing N-acetyl-D-galactosamine residues in N-acetyl-alpha-D-galactosaminides.

 

 
DOI no: 10.1038/nbt1298 Nat Biotechnol 25:454-464 (2007)
PubMed id: 17401360  
 
 
Bacterial glycosidases for the production of universal red blood cells.
Q.P.Liu, G.Sulzenbacher, H.Yuan, E.P.Bennett, G.Pietz, K.Saunders, J.Spence, E.Nudelman, S.B.Levery, T.White, J.M.Neveu, W.S.Lane, Y.Bourne, M.L.Olsson, B.Henrissat, H.Clausen.
 
  ABSTRACT  
 
Enzymatic removal of blood group ABO antigens to develop universal red blood cells (RBCs) was a pioneering vision originally proposed more than 25 years ago. Although the feasibility of this approach was demonstrated in clinical trials for group B RBCs, a major obstacle in translating this technology to clinical practice has been the lack of efficient glycosidase enzymes. Here we report two bacterial glycosidase gene families that provide enzymes capable of efficient removal of A and B antigens at neutral pH with low consumption of recombinant enzymes. The crystal structure of a member of the alpha-N-acetylgalactosaminidase family reveals an unusual catalytic mechanism involving NAD+. The enzymatic conversion processes we describe hold promise for achieving the goal of producing universal RBCs, which would improve the blood supply while enhancing the safety of clinical transfusions.
 
  Selected figure(s)  
 
Figure 1.
The immunodominant A and B trisaccharide epitopes are formed from the common H disaccharide substrate by 1,3-N-acetylgalactosaminyltransferase (GTA), defined by the blood group A gene, and -galactosyltransferase (GTB), defined by the blood group B gene, respectively. Conversely, the strategy used for enzymatic conversion of blood group A and B antigens to H involves exoglycosidases that specifically hydrolyze the 1,3GalNAc ( -N-acetylgalactosidase, A-zyme) or the 1,3galactose ( -galactosidase, B-zyme) to form the common H structure found on O RBCs. Black arrows indicate the different C-2 N-acetyl group of GalNAc and OH group of Gal in the immunodominant A and B epitopes, respectively. The immunodominant epitopes are positioned at the termini of oligosaccharide chains on glycolipids and glycoproteins as indicated by R. Increased complexity in ABH oligosaccharide structures are provided by the oligosaccharide carrier chain (R). On human RBCs most structures are based on type 2 polylactosamine chains with repeating Gal 1-4GlcNAc disaccharide units (both glycolipids and N-linked glycoproteins). A minor amount of type 1 chain ABH structures with Gal 1-3GlcNAc are found as glycolipids adsorbed from plasma^3.
Figure 2.
(a) Left panel. Cartoon representation of the overall structure of the -N-acetylgalactosaminidase dimer. In the left subunit, the dinucleotide binding domain (residues 19–148) is shown in pink, the -helices of the C-terminal domain (residues 149–444) in cyan, the -sheet forming the dimer interface in yellow, and the -helical bundle covering the NAD^+-binding tunnel in green. In the right subunit, a partial surface representation shows the entry of the NAD^+ binding tunnel and the active-site pocket. NAD^+ and GalNAc are shown as orange and red sticks, respectively. Right panel.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: Nat Biotechnol (2007, 25, 454-464) copyright 2007.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21210778 C.Bagnis, J.Chiaroni, and P.Bailly (2011).
Elimination of blood group antigens: hope and reality.
  Br J Haematol, 152, 392-400.  
20529650 A.Chakravarti (2010).
ASHG Awards and Addresses. 2008 Presidential address: Principia genetica: our future science.
  Am J Hum Genet, 86, 302-308.  
19940122 A.I.Guce, N.E.Clark, E.N.Salgado, D.R.Ivanen, A.A.Kulminskaya, H.Brumer, and S.C.Garman (2010).
Catalytic mechanism of human alpha-galactosidase.
  J Biol Chem, 285, 3625-3632.
PDB codes: 3hg2 3hg3 3hg4 3hg5
20357243 M.Allhorn, J.G.Briceño, L.Baudino, C.Lood, M.L.Olsson, S.Izui, and M.Collin (2010).
The IgG-specific endoglycosidase EndoS inhibits both cellular and complement-mediated autoimmune hemolysis.
  Blood, 115, 5080-5088.  
20601723 N.Kulik, L.Weignerová, T.Filipi, P.Pompach, P.Novák, H.Mrázek, K.Slámová, K.Bezouska, V.Kren, and R.Ettrich (2010).
The α-galactosidase type A gene aglA from Aspergillus niger encodes a fully functional α-N-acetylgalactosaminidase.
  Glycobiology, 20, 1410-1419.  
20066263 T.M.Gloster, and G.J.Davies (2010).
Glycosidase inhibition: assessing mimicry of the transition state.
  Org Biomol Chem, 8, 305-320.  
20552664 T.V.Vuong, and D.B.Wilson (2010).
Glycoside hydrolases: catalytic base/nucleophile diversity.
  Biotechnol Bioeng, 107, 195-205.  
20422448 Y.Tan, F.Gong, S.Li, S.Ji, Y.Lu, H.Gao, H.Xu, and Y.Zhang (2010).
Brief report: a new profile of terminal N-acetyllactosamines glycans on pig red blood cells and different expression of alpha-galactose on Sika deer red blood cells and nucleated cells.
  Glycoconj J, 27, 427-433.  
19625389 B.G.Hall, A.Pikis, and J.Thompson (2009).
Evolution and biochemistry of family 4 glycosidases: implications for assigning enzyme function in sequence annotations.
  Mol Biol Evol, 26, 2487-2497.  
19608744 M.A.Higgins, G.E.Whitworth, N.El Warry, M.Randriantsoa, E.Samain, R.D.Burke, D.J.Vocadlo, and A.B.Boraston (2009).
Differential recognition and hydrolysis of host carbohydrate antigens by Streptococcus pneumoniae family 98 glycoside hydrolases.
  J Biol Chem, 284, 26161-26173.
PDB codes: 2wmf 2wmg 2wmh 2wmi 2wmj 2wmk
19704115 M.Cohen, N.Hurtado-Ziola, and A.Varki (2009).
ABO blood group glycans modulate sialic acid recognition on erythrocytes.
  Blood, 114, 3668-3676.  
19683538 N.E.Clark, and S.C.Garman (2009).
The 1.9 a structure of human alpha-N-acetylgalactosaminidase: The molecular basis of Schindler and Kanzaki diseases.
  J Mol Biol, 393, 435-447.
PDB codes: 3h53 3h54 3h55 3igu
19250692 P.Bojarová, and V.Kren (2009).
Glycosidases: a key to tailored carbohydrates.
  Trends Biotechnol, 27, 199-209.  
18832932 A.L.Sørensen, K.M.Hoffmeister, and H.H.Wandall (2008).
Glycans and glycosylation of platelets: current concepts and implications for transfusion.
  Curr Opin Hematol, 15, 606-611.  
18822375 B.Henrissat, G.Sulzenbacher, and Y.Bourne (2008).
Glycosyltransferases, glycoside hydrolases: surprise, surprise!
  Curr Opin Struct Biol, 18, 527-533.  
18558099 D.J.Vocadlo, and G.J.Davies (2008).
Mechanistic insights into glycosidase chemistry.
  Curr Opin Chem Biol, 12, 539-555.  
18518825 L.L.Lairson, B.Henrissat, G.J.Davies, and S.G.Withers (2008).
Glycosyltransferases: structures, functions, and mechanisms.
  Annu Rev Biochem, 77, 521-555.  
18443780 L.Weignerová, T.Filipi, D.Manglová, and V.Kren (2008).
Induction, purification and characterization of alpha-N-acetylgalactosaminidase from Aspergillus Niger.
  Appl Microbiol Biotechnol, 79, 769-774.  
18227066 Q.P.Liu, H.Yuan, E.P.Bennett, S.B.Levery, E.Nudelman, J.Spence, G.Pietz, K.Saunders, T.White, M.L.Olsson, B.Henrissat, G.Sulzenbacher, and H.Clausen (2008).
Identification of a GH110 subfamily of alpha 1,3-galactosidases: novel enzymes for removal of the alpha 3Gal xenotransplantation antigen.
  J Biol Chem, 283, 8545-8554.  
17420747 G.Daniels, and S.G.Withers (2007).
Towards universal red blood cells.
  Nat Biotechnol, 25, 427-428.  
17937696 R.Zetterström (2007).
The Nobel Prize for the discovery of human blood groups: start of the prevention of haemolytic disease of the newborn.
  Acta Paediatr, 96, 1707-1709.  
17623311 T.Dingermann, and I.Zündorf (2007).
[Blood--a whole special juice]
  Pharm Unserer Zeit, 36, 250.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer