spacer
spacer

PDBsum entry 2hs2

Go to PDB code: 
protein ligands metals Protein-protein interface(s) links
Hydrolase PDB id
2hs2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
99 a.a. *
Ligands
017
017-DMS
Metals
_CL ×2
Waters ×213
* Residue conservation analysis
PDB id:
2hs2
Name: Hydrolase
Title: Crystal structure of m46l mutant of HIV-1 protease complexed with tmc114 (darunavir)
Structure: Protease. Chain: a, b. Fragment: HIV-1 protease (residues 500-598). Synonym: retropepsin, pr. Engineered: yes. Mutation: yes
Source: Human immunodeficiency virus 1. Organism_taxid: 11676. Gene: gag. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PQS)
Resolution:
1.22Å     R-factor:   0.142     R-free:   0.195
Authors: I.T.Weber,A.Y.Kovalevsky,F.Liu
Key ref:
A.Y.Kovalevsky et al. (2006). Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114. J Mol Biol, 363, 161-173. PubMed id: 16962136 DOI: 10.1016/j.jmb.2006.08.007
Date:
20-Jul-06     Release date:   03-Oct-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q7SSI0  (Q7SSI0_9HIV1) -  Protease (Fragment) from Human immunodeficiency virus 1
Seq:
Struc:
99 a.a.
99 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 6 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.3.4.23.16  - HIV-1 retropepsin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Specific for a P1 residue that is hydrophobic, and P1' variable, but often Pro.

 

 
DOI no: 10.1016/j.jmb.2006.08.007 J Mol Biol 363:161-173 (2006)
PubMed id: 16962136  
 
 
Ultra-high resolution crystal structure of HIV-1 protease mutant reveals two binding sites for clinical inhibitor TMC114.
A.Y.Kovalevsky, F.Liu, S.Leshchenko, A.K.Ghosh, J.M.Louis, R.W.Harrison, I.T.Weber.
 
  ABSTRACT  
 
TMC114 (darunavir) is a promising clinical inhibitor of HIV-1 protease (PR) for treatment of drug resistant HIV/AIDS. We report the ultra-high 0.84 A resolution crystal structure of the TMC114 complex with PR containing the drug-resistant mutation V32I (PR(V32I)), and the 1.22 A resolution structure of a complex with PR(M46L). These structures show TMC114 bound at two distinct sites, one in the active-site cavity and the second on the surface of one of the flexible flaps in the PR dimer. Remarkably, TMC114 binds at these two sites simultaneously in two diastereomers related by inversion of the sulfonamide nitrogen. Moreover, the flap site is shaped to accommodate the diastereomer with the S-enantiomeric nitrogen rather than the one with the R-enantiomeric nitrogen. The existence of the second binding site and two diastereomers suggest a mechanism for the high effectiveness of TMC114 on drug-resistant HIV and the potential design of new inhibitors.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Hydrogen bonds between the central OH group of TMC114 and the catalytic Asp25 and Asp25′. The major conformation of TMC114 is colored by atom type, and the minor conformation is green. Interatomic distances are shown in Å. (a) PR-TMC114 (PDB code 1S6G); the TMC114 conformations were refined with 55% and 45% occupancies. (b) PR[V32I]-TMC114 and (c) PR[M46L]-TMC114. The 2F[o]–F[c] electron density for the active site residues Asp25 and Asp25′ is shown with the contour levels of 2.2σ. The alternate conformations have occupancies of 60% and 40%.
Figure 3.
Figure 3. Hydrogen bond, C-H…O and C-H…π interactions are shown in the active site cavity of PR[V32I] for the major conformation of TMC114 (a) and the minor conformation (b). Interactions for the alternate conformations of TMC114 in PR and PR[M46L] are shown in the Supplementary Material.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2006, 363, 161-173) copyright 2006.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22751672 T.C.Terwilliger, R.J.Read, P.D.Adams, A.T.Brunger, P.V.Afonine, R.W.Grosse-Kunstleve, and L.W.Hung (2012).
Improved crystallographic models through iterated local density-guided model deformation and reciprocal-space refinement.
  Acta Crystallogr D Biol Crystallogr, 68, 861-870.  
21266017 A.S.Reddy, V.Jalahalli, S.Kumar, R.Garg, X.Zhang, and G.N.Sastry (2011).
Analysis of HIV protease binding pockets based on 3D shape and electrostatic potential descriptors.
  Chem Biol Drug Des, 77, 137-151.  
21555220 B.L.Gao, C.M.Zhang, Y.Z.Yin, L.Q.Tang, and Z.P.Liu (2011).
Design and synthesis of potent HIV-1 protease inhibitors incorporating hydroxyprolinamides as novel P2 ligands.
  Bioorg Med Chem Lett, 21, 3730-3733.  
20695887 C.H.Shen, Y.F.Wang, A.Y.Kovalevsky, R.W.Harrison, and I.T.Weber (2010).
Amprenavir complexes with HIV-1 protease and its drug-resistant mutants altering hydrophobic clusters.
  FEBS J, 277, 3699-3714.
PDB codes: 3nu3 3nu4 3nu5 3nu6 3nu9 3nuj 3nuo
20136635 M.J.Hartl, K.Schweimer, M.H.Reger, S.Schwarzinger, J.Bodem, P.Rösch, and B.M.Wöhrl (2010).
Formation of transient dimers by a retroviral protease.
  Biochem J, 427, 197-203.  
19147519 D.Descamps, S.Lambert-Niclot, A.G.Marcelin, G.Peytavin, B.Roquebert, C.Katlama, P.Yeni, M.Felices, V.Calvez, and F.Brun-Vézinet (2009).
Mutations associated with virological response to darunavir/ritonavir in HIV-1-infected protease inhibitor-experienced patients.
  J Antimicrob Chemother, 63, 585-592.  
18781587 E.S.Bolstad, and A.C.Anderson (2009).
In pursuit of virtual lead optimization: pruning ensembles of receptor structures for increased efficiency and accuracy during docking.
  Proteins, 75, 62-74.  
18928291 A.K.Ghosh, B.D.Chapsal, A.Baldridge, K.Ide, Y.Koh, and H.Mitsuya (2008).
Design and synthesis of stereochemically defined novel spirocyclic P2-ligands for HIV-1 protease inhibitors.
  Org Lett, 10, 5135-5138.  
18808097 A.Y.Kovalevsky, A.K.Ghosh, and I.T.Weber (2008).
Solution kinetics measurements suggest HIV-1 protease has two binding sites for darunavir and amprenavir.
  J Med Chem, 51, 6599-6603.  
18834890 A.Y.Kovalevsky, J.M.Louis, A.Aniana, A.K.Ghosh, and I.T.Weber (2008).
Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease.
  J Mol Biol, 384, 178-192.
PDB codes: 3ebz 3ec0 3ecg
  19209258 C.L.Tremblay (2008).
Combating HIV resistance - focus on darunavir.
  Ther Clin Risk Manag, 4, 759-766.  
18097236 C.de Mendoza, C.Garrido, A.Corral, N.Zahonero, and V.Soriano (2008).
Prevalence and impact of HIV-1 protease mutation L76V on lopinavir resistance.
  AIDS, 22, 311-313.  
18227188 D.Desbois, B.Roquebert, G.Peytavin, F.Damond, G.Collin, A.Bénard, P.Campa, S.Matheron, G.Chêne, F.Brun-Vézinet, and D.Descamps (2008).
In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors.
  Antimicrob Agents Chemother, 52, 1545-1548.  
18597780 F.Liu, A.Y.Kovalevsky, Y.Tie, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2008).
Effect of flap mutations on structure of HIV-1 protease and inhibition by saquinavir and darunavir.
  J Mol Biol, 381, 102-115.
PDB codes: 3cyw 3cyx 3d1x 3d1y 3d1z 3d20
18720485 J.Böttcher, A.Blum, S.Dörr, A.Heine, W.E.Diederich, and G.Klebe (2008).
Targeting the open-flap conformation of HIV-1 protease with pyrrolidine-based inhibitors.
  ChemMedChem, 3, 1337-1344.
PDB code: 3bc4
18281688 J.M.Sayer, F.Liu, R.Ishima, I.T.Weber, and J.M.Louis (2008).
Effect of the active site D25N mutation on the structure, stability, and ligand binding of the mature HIV-1 protease.
  J Biol Chem, 283, 13459-13470.
PDB codes: 3bva 3bvb
18506577 J.Rebehmed, F.Barbault, C.Teixeira, and F.Maurel (2008).
2D and 3D QSAR studies of diarylpyrimidine HIV-1 reverse transcriptase inhibitors.
  J Comput Aided Mol Des, 22, 831-841.  
17900913 A.K.Ghosh, Z.L.Dawson, and H.Mitsuya (2007).
Darunavir, a conceptually new HIV-1 protease inhibitor for the treatment of drug-resistant HIV.
  Bioorg Med Chem, 15, 7576-7580.  
17928344 I.Dierynck, M.De Wit, E.Gustin, I.Keuleers, J.Vandersmissen, S.Hallenberger, and K.Hertogs (2007).
Binding kinetics of darunavir to human immunodeficiency virus type 1 protease explain the potent antiviral activity and high genetic barrier.
  J Virol, 81, 13845-13851.  
17412697 R.Ishima, D.A.Torchia, and J.M.Louis (2007).
Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
  J Biol Chem, 282, 17190-17199.  
17539822 S.Chellappan, G.S.Kiran Kumar Reddy, A.Ali, M.N.Nalam, S.G.Anjum, H.Cao, V.Kairys, M.X.Fernandes, M.D.Altman, B.Tidor, T.M.Rana, C.A.Schiffer, and M.K.Gilson (2007).
Design of mutation-resistant HIV protease inhibitors with the substrate envelope hypothesis.
  Chem Biol Drug Des, 69, 298-313.
PDB codes: 2psu 2psv
17696515 Y.F.Wang, Y.Tie, P.I.Boross, J.Tozser, A.K.Ghosh, R.W.Harrison, and I.T.Weber (2007).
Potent new antiviral compound shows similar inhibition and structural interactions with drug resistant mutants and wild type HIV-1 protease.
  J Med Chem, 50, 4509-4515.
PDB codes: 2qci 2qd6 2qd7 2qd8 2z4o
17635930 Y.Koh, S.Matsumi, D.Das, M.Amano, D.A.Davis, J.Li, S.Leschenko, A.Baldridge, T.Shioda, R.Yarchoan, A.K.Ghosh, and H.Mitsuya (2007).
Potent inhibition of HIV-1 replication by novel non-peptidyl small molecule inhibitors of protease dimerization.
  J Biol Chem, 282, 28709-28720.  
17243183 Y.Tie, A.Y.Kovalevsky, P.Boross, Y.F.Wang, A.K.Ghosh, J.Tozser, R.W.Harrison, and I.T.Weber (2007).
Atomic resolution crystal structures of HIV-1 protease and mutants V82A and I84V with saquinavir.
  Proteins, 67, 232-242.
PDB codes: 2nmw 2nmy 2nmz 2nnk 2nnp 3oxc
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer