spacer
spacer

PDBsum entry 2ezc

Go to PDB code: 
protein links
Phosphotransferase PDB id
2ezc

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
249 a.a. *
* Residue conservation analysis
PDB id:
2ezc
Name: Phosphotransferase
Title: Amino terminal domain of enzyme i from escherichia coli, nmr, 14 structures
Structure: Phosphotransferase system, enzyme i. Chain: a. Fragment: amino-terminal domain residues 1 - 259. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Strain: gi698. Expressed in: escherichia coli. Expression_system_taxid: 562.
NMR struc: 14 models
Authors: G.M.Clore,N.Tjandra,D.S.Garrett,A.M.Gronenborn
Key ref: N.Tjandra et al. (1997). Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy. Nat Struct Biol, 4, 443-449. PubMed id: 9187651
Date:
07-May-97     Release date:   20-Aug-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P08839  (PT1_ECOLI) -  Phosphoenolpyruvate-protein phosphotransferase from Escherichia coli (strain K12)
Seq:
Struc:
 
Seq:
Struc:
575 a.a.
249 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.2.7.3.9  - phosphoenolpyruvate--protein phosphotransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: L-histidyl-[protein] + phosphoenolpyruvate = N(pros)-phospho-L-histidyl- [protein] + pyruvate
L-histidyl-[protein]
+ phosphoenolpyruvate
= N(pros)-phospho-L-histidyl- [protein]
+ pyruvate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
Nat Struct Biol 4:443-449 (1997)
PubMed id: 9187651  
 
 
Defining long range order in NMR structure determination from the dependence of heteronuclear relaxation times on rotational diffusion anisotropy.
N.Tjandra, D.S.Garrett, A.M.Gronenborn, A.Bax, G.M.Clore.
 
  ABSTRACT  
 
Structure determination by NMR presently relies on short range restraints between atoms in close spatial proximity, principally in the form of short (< 5 A) interproton distances. In the case of modular or multidomain proteins and linear nucleic acids, the density of short interproton distance contacts between structural elements far apart in the sequence may be insufficient to define their relative orientations. In this paper we show how the dependence of heteronuclear longitudinal and transverse relaxation times on the rotational diffusion anisotropy of non-spherical molecules can be readily used to directly provide restraints for simulated annealing structure refinement that characterize long range order a priori. The method is demonstrated using the N-terminal domain of Enzyme I,a protein of 259 residues comprising two distinct domains with a diffusion anisotropy(Dparallel/Dperpendicular)of approximately 2.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20431534 S.J.de Vries, M.van Dijk, and A.M.Bonvin (2010).
The HADDOCK web server for data-driven biomolecular docking.
  Nat Protoc, 5, 883-897.  
20392103 Y.Ryabov, G.M.Clore, and C.D.Schwieters (2010).
Direct use of 15N relaxation rates as experimental restraints on molecular shape and orientation for docking of protein-protein complexes.
  J Am Chem Soc, 132, 5987-5989.  
19954183 J.Xiao, and J.Baum (2009).
Structural insights from (15)N relaxation data for an anisotropic collagen peptide.
  J Am Chem Soc, 131, 18194-18195.  
19500594 R.A.Mooney, K.Schweimer, P.Rösch, M.Gottesman, and R.Landick (2009).
Two structurally independent domains of E. coli NusG create regulatory plasticity via distinct interactions with RNA polymerase and regulators.
  J Mol Biol, 391, 341-358.
PDB codes: 2jvv 2k06
18816799 T.A.Ramelot, S.Raman, A.P.Kuzin, R.Xiao, L.C.Ma, T.B.Acton, J.F.Hunt, G.T.Montelione, D.Baker, and M.A.Kennedy (2009).
Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study.
  Proteins, 75, 147-167.
PDB codes: 1tvg 1xpw
19537713 Y.Ryabov, J.Y.Suh, A.Grishaev, G.M.Clore, and C.D.Schwieters (2009).
Using the experimentally determined components of the overall rotational diffusion tensor to restrain molecular shape and size in NMR structure determination of globular proteins and protein-protein complexes.
  J Am Chem Soc, 131, 9522-9531.  
18795801 A.S.Maltsev, A.H.Ahmed, M.K.Fenwick, D.E.Jane, and R.E.Oswald (2008).
Mechanism of partial agonism at the GluR2 AMPA receptor: Measurements of lobe orientation in solution.
  Biochemistry, 47, 10600-10610.  
18607001 H.Van Melckebeke, M.Devany, C.Di Primo, F.Beaurain, J.J.Toulmé, D.L.Bryce, and J.Boisbouvier (2008).
Liquid-crystal NMR structure of HIV TAR RNA bound to its SELEX RNA aptamer reveals the origins of the high stability of the complex.
  Proc Natl Acad Sci U S A, 105, 9210-9215.
PDB code: 2rn1
18668206 J.J.Kuszewski, R.A.Thottungal, G.M.Clore, and C.D.Schwieters (2008).
Automated error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments: improved robustness and performance of the PASD algorithm.
  J Biomol NMR, 41, 221-239.  
17554496 N.Tjandra, M.Suzuki, and S.L.Chang (2007).
Refinement of protein structure against non-redundant carbonyl 13C NMR relaxation.
  J Biomol NMR, 38, 243-253.  
17550252 Y.Ryabov, and D.Fushman (2007).
Structural assembly of multidomain proteins and protein complexes guided by the overall rotational diffusion tensor.
  J Am Chem Soc, 129, 7894-7902.
PDB codes: 2pe9 2pea
16416140 F.Gabel, B.Simon, and M.Sattler (2006).
A target function for quaternary structural refinement from small angle scattering and NMR orientational restraints.
  Eur Biophys J, 35, 313-327.  
16536547 J.Chen, W.Im, and C.L.Brooks (2006).
Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field.
  J Am Chem Soc, 128, 3728-3736.  
15937902 A.D.van Dijk, D.Fushman, and A.M.Bonvin (2005).
Various strategies of using residual dipolar couplings in NMR-driven protein docking: application to Lys48-linked di-ubiquitin and validation against 15N-relaxation data.
  Proteins, 60, 367-381.
PDB code: 2bgf
15752366 A.G.Cook, L.N.Johnson, and J.M.McDonnell (2005).
Structural characterization of Ca2+/CaM in complex with the phosphorylase kinase PhK5 peptide.
  FEBS J, 272, 1511-1522.  
16270100 A.Lingel, B.Simon, E.Izaurralde, and M.Sattler (2005).
The structure of the flock house virus B2 protein, a viral suppressor of RNA interference, shows a novel mode of double-stranded RNA recognition.
  EMBO Rep, 6, 1149-1155.
PDB code: 2b9z
16331419 F.Dancea, and U.Günther (2005).
Automated protein NMR structure determination using wavelet de-noised NOESY spectra.
  J Biomol NMR, 33, 139-152.  
15692736 M.Fossi, J.Linge, D.Labudde, D.Leitner, M.Nilges, and H.Oschkinat (2005).
Influence of chemical shift tolerances on NMR structure calculations using ARIA protocols for assigning NOE data.
  J Biomol NMR, 31, 21-34.  
16258830 S.B.Nabuurs, E.Krieger, C.A.Spronk, A.J.Nederveen, G.Vriend, and G.W.Vuister (2005).
Definition of a new information-based per-residue quality parameter.
  J Biomol NMR, 33, 123-134.  
11959490 G.M.Clore, and C.D.Schwieters (2002).
Theoretical and computational advances in biomolecular NMR spectroscopy.
  Curr Opin Struct Biol, 12, 146-153.  
11867548 J.Iwahara, M.Iwahara, G.W.Daughdrill, J.Ford, and R.T.Clubb (2002).
The structure of the Dead ringer-DNA complex reveals how AT-rich interaction domains (ARIDs) recognize DNA.
  EMBO J, 21, 1197-1209.
PDB code: 1kqq
12121645 T.S.Ulmer, J.M.Werner, and I.D.Campbell (2002).
SH3-SH2 domain orientation in Src kinases: NMR studies of Fyn.
  Structure, 10, 901-911.  
12762054 A.Kaji, M.C.Kiel, G.Hirokawa, A.R.Muto, Y.Inokuchi, and H.Kaji (2001).
The fourth step of protein synthesis: disassembly of the posttermination complex is catalyzed by elongation factor G and ribosome recycling factor, a near-perfect mimic of tRNA.
  Cold Spring Harb Symp Quant Biol, 66, 515-529.  
11180328 H.Desvaux, J.C.Gabriel, P.Berthault, and F.Camerel (2001).
First Use of a Mineral Liquid Crystal for Measurement of Residual Dipolar Couplings of a Nonlabeled Biomolecule We would like to thank Dr. Patrick Davidson for helpful discussions, Stéphane Grolleau for TGA (thermogravimetric analysis) measurements, and Prof. Pierre Sinaÿ and Dr. Yongmin Zhang for the gift of the pentasaccharide. Financial support from the CNRS, the Ministry of Education (PhD fellowship for F.C.), the Région Pays de Loire, and the GDR-CNRS 690 FORMES (D(2)O) is gratefully acknowledged.
  Angew Chem Int Ed Engl, 40, 373-376.  
11685248 J.J.Chou, S.Li, C.B.Klee, and A.Bax (2001).
Solution structure of Ca(2+)-calmodulin reveals flexible hand-like properties of its domains.
  Nat Struct Biol, 8, 990-997.
PDB codes: 1j7o 1j7p
11327859 T.Yoshida, S.Uchiyama, H.Nakano, H.Kashimori, H.Kijima, T.Ohshima, Y.Saihara, T.Ishino, H.Shimahara, T.Yoshida, K.Yokose, T.Ohkubo, A.Kaji, and Y.Kobayashi (2001).
Solution structure of the ribosome recycling factor from Aquifex aeolicus.
  Biochemistry, 40, 2387-2396.
PDB code: 1ge9
10821674 J.L.Baber, D.Levens, D.Libutti, and N.Tjandra (2000).
Chemical shift mapped DNA-binding sites and 15N relaxation analysis of the C-terminal KH domain of heterogeneous nuclear ribonucleoprotein K.
  Biochemistry, 39, 6022-6032.  
11056034 S.C.Sahu, A.K.Bhuyan, A.Majumdar, and J.B.Udgaonkar (2000).
Backbone dynamics of barstar: a (15)N NMR relaxation study.
  Proteins, 41, 460-474.  
10913243 S.P.Smith, Y.Hashimoto, A.R.Pickford, I.D.Campbell, and J.M.Werner (2000).
Interface characterization of the type II module pair from fibronectin.
  Biochemistry, 39, 8374-8381.  
9890927 A.C.LiWang, J.J.Cao, H.Zheng, Z.Lu, S.C.Peiper, and P.J.LiWang (1999).
Dynamics study on the anti-human immunodeficiency virus chemokine viral macrophage-inflammatory protein-II (VMIP-II) reveals a fully monomeric protein.
  Biochemistry, 38, 442-453.  
  10048327 E.B.Bertelsen, H.Zhou, D.F.Lowry, G.C.Flynn, and F.W.Dahlquist (1999).
Topology and dynamics of the 10 kDa C-terminal domain of DnaK in solution.
  Protein Sci, 8, 343-354.  
10089878 J.M.McDonnell, D.Fushman, C.L.Milliman, S.J.Korsmeyer, and D.Cowburn (1999).
Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists.
  Cell, 96, 625-634.
PDB code: 1ddb
10571185 Y.X.Wang, N.Neamati, J.Jacob, I.Palmer, S.J.Stahl, J.D.Kaufman, P.L.Huang, P.L.Huang, H.E.Winslow, Y.Pommier, P.T.Wingfield, S.Lee-Huang, A.Bax, and D.A.Torchia (1999).
Solution structure of anti-HIV-1 and anti-tumor protein MAP30: structural insights into its multiple functions.
  Cell, 99, 433-442.
PDB code: 1d8v
9600889 G.M.Clore, and A.M.Gronenborn (1998).
New methods of structure refinement for macromolecular structure determination by NMR.
  Proc Natl Acad Sci U S A, 95, 5891-5898.  
9818180 G.M.Clore, and A.M.Gronenborn (1998).
NMR structure determination of proteins and protein complexes larger than 20 kDa.
  Curr Opin Chem Biol, 2, 564-570.  
9642277 H.A.Baden, S.P.Sarma, R.B.Kapust, R.A.Byrd, and D.S.Waugh (1998).
The amino-terminal domain of human STAT4. Overproduction, purification, and biophysical characterization.
  J Biol Chem, 273, 17109-17114.  
9646872 K.H.Gardner, and L.E.Kay (1998).
The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins.
  Annu Rev Biophys Biomol Struct, 27, 357-406.  
  9865964 Z.Bu, S.Koide, and D.M.Engelman (1998).
A solution SAXS study of Borrelia burgdorferi OspA, a protein containing a single-layer beta-sheet.
  Protein Sci, 7, 2681-2683.  
9345634 A.G.Palmer (1997).
Probing molecular motion by NMR.
  Curr Opin Struct Biol, 7, 732-737.  
9345633 L.E.Kay, and K.H.Gardner (1997).
Solution NMR spectroscopy beyond 25 kDa.
  Curr Opin Struct Biol, 7, 722-731.  
9353189 N.Tjandra, and A.Bax (1997).
Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium.
  Science, 278, 1111-1114.  
9303001 N.Tjandra, J.G.Omichinski, A.M.Gronenborn, G.M.Clore, and A.Bax (1997).
Use of dipolar 1H-15N and 1H-13C couplings in the structure determination of magnetically oriented macromolecules in solution.
  Nat Struct Biol, 4, 732-738.
PDB codes: 2gat 3gat
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer