 |
PDBsum entry 2byf
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Lipase
|
 |
|
Title:
|
 |
Nmr solution structure of phospholipasE C epsilon ra 2 domain
|
|
Structure:
|
 |
PhospholipasE C, epsilon 1. Chain: a. Fragment: ra2 domain, residues 2131-2246. Synonym: phospholipasE C epsilon. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008. Expression_system_variant: c41.
|
|
NMR struc:
|
 |
20 models
|
 |
|
Authors:
|
 |
T.D.Bunney,R.Harris,N.L.Gandarillas,M.B.Josephs,S.M.Roe,H.F.Paterson, F.Rodrigues-Lima,D.Esposito,P.Gieschik,L.H.Pearl,P.C.Driscoll, M.Katan
|
Key ref:
|
 |
T.D.Bunney
et al.
(2006).
Structural and mechanistic insights into ras association domains of phospholipase C epsilon.
Mol Cell,
21,
495-507.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
01-Aug-05
|
Release date:
|
22-Feb-06
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
Q9P212
(PLCE1_HUMAN) -
1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase epsilon-1 from Homo sapiens
|
|
|
|
Seq: Struc:
|
 |
 |
 |
2302 a.a.
116 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 1 residue position (black
cross)
|
|
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
E.C.3.1.4.11
- phosphoinositide phospholipase C.
|
|
 |
 |
 |
 |
 |

Pathway:
|
 |
myo-Inositol Phosphate Metabolism
|
 |
 |
 |
 |
 |
Reaction:
|
 |
a 1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate) + H2O = 1D-myo-inositol 1,4,5-trisphosphate + a 1,2-diacyl-sn-glycerol + H+
|
 |
 |
 |
 |
 |
1,2-diacyl-sn-glycero-3-phospho-(1D-myo-inositol-4,5-bisphosphate)
|
+
|
H2O
|
=
|
1D-myo-inositol 1,4,5-trisphosphate
|
+
|
1,2-diacyl-sn-glycerol
|
+
|
H(+)
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Molecule diagrams generated from .mol files obtained from the
KEGG ftp site
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
|
| |
|
DOI no:
|
Mol Cell
21:495-507
(2006)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structural and mechanistic insights into ras association domains of phospholipase C epsilon.
|
|
T.D.Bunney,
R.Harris,
N.L.Gandarillas,
M.B.Josephs,
S.M.Roe,
S.C.Sorli,
H.F.Paterson,
F.Rodrigues-Lima,
D.Esposito,
C.P.Ponting,
P.Gierschik,
L.H.Pearl,
P.C.Driscoll,
M.Katan.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
Ras proteins signal to a number of distinct pathways by interacting with diverse
effectors. Studies of ras/effector interactions have focused on three classes,
Raf kinases, ral guanylnucleotide-exchange factors, and
phosphatidylinositol-3-kinases. Here we describe ras interactions with another
effector, the recently identified phospholipase C epsilon (PLCvarepsilon). We
solved structures of PLCvarepsilon RA domains (RA1 and RA2) by NMR and the
structure of the RA2/ras complex by X-ray crystallography. Although the
similarity between ubiquitin-like folds of RA1 and RA2 proves that they are
homologs, only RA2 can bind ras. Some of the features of the RA2/ras interface
are unique to PLCvarepsilon, while the ability to make contacts with both switch
I and II regions of ras is shared only with phosphatidylinositol-3-kinase.
Studies of PLCvarepsilon regulation suggest that, in a cellular context, the RA2
domain, in a mode specific to PLCvarepsilon, has a role in membrane targeting
with further regulatory impact on PLC activity.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Structural Perspectives of the Complex between
Ras and RA2
|
 |
Figure 6.
Figure 6. Model of Two-Step Mechanism of PLC epsilon
Translocation and Activation
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(2006,
21,
495-507)
copyright 2006.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.B.Park,
C.S.Lee,
J.H.Jang,
J.Ghim,
Y.J.Kim,
S.You,
D.Hwang,
P.G.Suh,
and
S.H.Ryu
(2012).
Phospholipase signalling networks in cancer.
|
| |
Nat Rev Cancer,
12,
782-792.
|
 |
|
|
|
|
 |
L.Gremer,
T.Merbitz-Zahradnik,
R.Dvorsky,
I.C.Cirstea,
C.P.Kratz,
M.Zenker,
A.Wittinghofer,
and
M.R.Ahmadian
(2011).
Germline KRAS mutations cause aberrant biochemical and physical properties leading to developmental disorders.
|
| |
Hum Mutat,
32,
33-43.
|
 |
|
|
|
|
 |
R.Ghai,
M.Mobli,
S.J.Norwood,
A.Bugarcic,
R.D.Teasdale,
G.F.King,
and
B.M.Collins
(2011).
Phox homology band 4.1/ezrin/radixin/moesin-like proteins function as molecular scaffolds that interact with cargo receptors and Ras GTPases.
|
| |
Proc Natl Acad Sci U S A,
108,
7763-7768.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.D.Bunney,
and
M.Katan
(2011).
PLC regulation: emerging pictures for molecular mechanisms.
|
| |
Trends Biochem Sci,
36,
88-96.
|
 |
|
|
|
|
 |
K.Fukami,
S.Inanobe,
K.Kanemaru,
and
Y.Nakamura
(2010).
Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance.
|
| |
Prog Lipid Res,
49,
429-437.
|
 |
|
|
|
|
 |
L.D.Wang,
F.Y.Zhou,
X.M.Li,
L.D.Sun,
X.Song,
Y.Jin,
J.M.Li,
G.Q.Kong,
H.Qi,
J.Cui,
L.Q.Zhang,
J.Z.Yang,
J.L.Li,
X.C.Li,
J.L.Ren,
Z.C.Liu,
W.J.Gao,
L.Yuan,
W.Wei,
Y.R.Zhang,
W.P.Wang,
I.Sheyhidin,
F.Li,
B.P.Chen,
S.W.Ren,
B.Liu,
D.Li,
J.W.Ku,
Z.M.Fan,
S.L.Zhou,
Z.G.Guo,
X.K.Zhao,
N.Liu,
Y.H.Ai,
F.F.Shen,
W.Y.Cui,
S.Song,
T.Guo,
J.Huang,
C.Yuan,
J.Huang,
Y.Wu,
W.B.Yue,
C.W.Feng,
H.L.Li,
Y.Wang,
J.Y.Tian,
Y.Lu,
Y.Yuan,
W.L.Zhu,
M.Liu,
W.J.Fu,
X.Yang,
H.J.Wang,
S.L.Han,
J.Chen,
M.Han,
H.Y.Wang,
P.Zhang,
X.M.Li,
J.C.Dong,
G.L.Xing,
R.Wang,
M.Guo,
Z.W.Chang,
H.L.Liu,
L.Guo,
Z.Q.Yuan,
H.Liu,
Q.Lu,
L.Q.Yang,
F.G.Zhu,
X.F.Yang,
X.S.Feng,
Z.Wang,
Y.Li,
S.G.Gao,
Q.Qige,
L.T.Bai,
W.J.Yang,
G.Y.Lei,
Z.Y.Shen,
L.Q.Chen,
E.M.Li,
L.Y.Xu,
Z.Y.Wu,
W.K.Cao,
J.P.Wang,
Z.Q.Bao,
J.L.Chen,
G.C.Ding,
X.Zhuang,
Y.F.Zhou,
H.F.Zheng,
Z.Zhang,
X.B.Zuo,
Z.M.Dong,
D.M.Fan,
X.He,
and
J.Wang
(2010).
Genome-wide association study of esophageal squamous cell carcinoma in Chinese subjects identifies susceptibility loci at PLCE1 and C20orf54.
|
| |
Nat Genet,
42,
759-763.
|
 |
|
|
|
|
 |
E.Yaman,
R.Gasper,
C.Koerner,
A.Wittinghofer,
and
U.H.Tazebay
(2009).
RasGEF1A and RasGEF1B are guanine nucleotide exchange factors that discriminate between Rap GTP-binding proteins and mediate Rap2-specific nucleotide exchange.
|
| |
FEBS J,
276,
4607-4616.
|
 |
|
|
|
|
 |
T.D.Bunney,
O.Opaleye,
S.M.Roe,
P.Vatter,
R.W.Baxendale,
C.Walliser,
K.L.Everett,
M.B.Josephs,
C.Christow,
F.Rodrigues-Lima,
P.Gierschik,
L.H.Pearl,
and
M.Katan
(2009).
Structural insights into formation of an active signaling complex between Rac and phospholipase C gamma 2.
|
| |
Mol Cell,
34,
223-233.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
T.K.Harden,
S.N.Hicks,
and
J.Sondek
(2009).
Phospholipase C isozymes as effectors of Ras superfamily GTPases.
|
| |
J Lipid Res,
50,
S243-S248.
|
 |
|
|
|
|
 |
B.Stieglitz,
C.Bee,
D.Schwarz,
O.Yildiz,
A.Moshnikova,
A.Khokhlatchev,
and
C.Herrmann
(2008).
Novel type of Ras effector interaction established between tumour suppressor NORE1A and Ras switch II.
|
| |
EMBO J,
27,
1995-2005.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Kiel,
D.Aydin,
and
L.Serrano
(2008).
Association rate constants of ras-effector interactions are evolutionarily conserved.
|
| |
PLoS Comput Biol,
4,
e1000245.
|
 |
|
|
|
|
 |
C.Walliser,
M.Retlich,
R.Harris,
K.L.Everett,
M.B.Josephs,
P.Vatter,
D.Esposito,
P.C.Driscoll,
M.Katan,
P.Gierschik,
and
T.D.Bunney
(2008).
Rac Regulates Its Effector Phospholipase C{gamma}2 through Interaction with a Split Pleckstrin Homology Domain.
|
| |
J Biol Chem,
283,
30351-30362.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.P.Seifert,
Y.Zhou,
S.N.Hicks,
J.Sondek,
and
T.K.Harden
(2008).
Dual Activation of Phospholipase C-{epsilon} by Rho and Ras GTPases.
|
| |
J Biol Chem,
283,
29690-29698.
|
 |
|
|
|
|
 |
L.E.Goldfinger
(2008).
Choose your own path: specificity in Ras GTPase signaling.
|
| |
Mol Biosyst,
4,
293-299.
|
 |
|
|
|
|
 |
O.Okhrimenko,
and
I.Jelesarov
(2008).
A survey of the year 2006 literature on applications of isothermal titration calorimetry.
|
| |
J Mol Recognit,
21,
1.
|
 |
|
|
|
|
 |
S.Yun,
A.Möller,
S.K.Chae,
W.P.Hong,
Y.J.Bae,
D.D.Bowtell,
S.H.Ryu,
and
P.G.Suh
(2008).
Siah proteins induce the epidermal growth factor-dependent degradation of phospholipase Cepsilon.
|
| |
J Biol Chem,
283,
1034-1042.
|
 |
|
|
|
|
 |
S.Yun,
W.P.Hong,
J.H.Choi,
K.S.Yi,
S.K.Chae,
S.H.Ryu,
and
P.G.Suh
(2008).
Phospholipase C-epsilon augments epidermal growth factor-dependent cell growth by inhibiting epidermal growth factor receptor down-regulation.
|
| |
J Biol Chem,
283,
341-349.
|
 |
|
|
|
|
 |
Z.Gáspári,
G.Pál,
and
A.Perczel
(2008).
A redesigned genetic code for selective labeling in protein NMR.
|
| |
Bioessays,
30,
772-780.
|
 |
|
|
|
|
 |
C.Kiel,
and
L.Serrano
(2007).
Prediction of Ras-effector interactions using position energy matrices.
|
| |
Bioinformatics,
23,
2226-2230.
|
 |
|
|
|
|
 |
M.Miertzschke,
P.Stanley,
T.D.Bunney,
F.Rodrigues-Lima,
N.Hogg,
and
M.Katan
(2007).
Characterization of interactions of adapter protein RAPL/Nore1B with RAP GTPases and their role in T cell migration.
|
| |
J Biol Chem,
282,
30629-30642.
|
 |
|
|
|
|
 |
L.E.Goldfinger,
C.Ptak,
E.D.Jeffery,
J.Shabanowitz,
D.F.Hunt,
and
M.H.Ginsberg
(2006).
RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration.
|
| |
J Cell Biol,
174,
877-888.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |