spacer
spacer

PDBsum entry 2asb

Go to PDB code: 
protein dna_rna links
Transcription/RNA PDB id
2asb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
226 a.a. *
DNA/RNA
Waters ×260
* Residue conservation analysis
PDB id:
2asb
Name: Transcription/RNA
Title: Structure of a mycobacterium tuberculosis nusa-RNA complex
Structure: Ribosomal RNA (5'- gaacucaauag -3'). Chain: b. Engineered: yes. Transcription elongation protein nusa. Chain: a. Engineered: yes
Source: Synthetic: yes. Other_details: oligonucleotide synthesis. Mycobacterium tuberculosis. Organism_taxid: 1773. Gene: nusa. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Biol. unit: Dimer (from PQS)
Resolution:
1.50Å     R-factor:   0.190     R-free:   0.222
Authors: B.Beuth,S.Pennell,K.B.Arnvig,S.R.Martin,I.A.Taylor
Key ref:
B.Beuth et al. (2005). Structure of a Mycobacterium tuberculosis NusA-RNA complex. EMBO J, 24, 3576-3587. PubMed id: 16193062 DOI: 10.1038/sj.emboj.7600829
Date:
23-Aug-05     Release date:   11-Oct-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P9WIV3  (NUSA_MYCTU) -  Transcription termination/antitermination protein NusA from Mycobacterium tuberculosis (strain ATCC 25618 / H37Rv)
Seq:
Struc:
347 a.a.
226 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

DNA/RNA chain
  G-A-A-C-U-C-A-A-U-A-G 11 bases

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1038/sj.emboj.7600829 EMBO J 24:3576-3587 (2005)
PubMed id: 16193062  
 
 
Structure of a Mycobacterium tuberculosis NusA-RNA complex.
B.Beuth, S.Pennell, K.B.Arnvig, S.R.Martin, I.A.Taylor.
 
  ABSTRACT  
 
NusA is a key regulator of bacterial transcriptional elongation, pausing, termination and antitermination, yet relatively little is known about the molecular basis of its activity in these fundamental processes. In Mycobacterium tuberculosis, NusA has been shown to bind with high affinity and specificity to BoxB-BoxA-BoxC antitermination sequences within the leader region of the single ribosomal RNA (rRNA) operon. We have determined high-resolution X-ray structures of a complex of NusA with two short oligo-ribonucleotides derived from the BoxC stem-loop motif and have characterised the interaction of NusA with a variety of RNAs derived from the antitermination region. These structures reveal the RNA bound in an extended conformation to a large interacting surface on both KH domains. Combining structural data with observed spectral and calorimetric changes, we now show that NusA binding destabilises secondary structure within rRNA antitermination sequences and propose a model where NusA functions as a chaperone for nascently forming RNA structures.
 
  Selected figure(s)  
 
Figure 5.
Figure 5 A schematic representation of the RNA-protein contacts in the NusA Nt-RNA11 complex. Bases represented in grey circles are stacked and hydrogen bonding interactions coloured red are mediated through backbone-base contacts.
Figure 6.
Figure 6 Details of the interaction of the KH domains with RNA11. (A) Interaction of KH1 with nucleotides Ade42 to Ura46 in the / groove of helices 2, 3 and 1- 3 of the KH1 domain. (B) A view highlighting the protein-nucleic acid interactions around Ade44 and Ade45. The protein is shown as a green ribbon. The hydrogen bonds of Ade44 to the backbone are shown together with the interactions of the 2'-hydroxy group of Ade45. (C) Stereo view of the interactions of Ade50, Ura51 and Ade52 with the protein. The path of the RNA along the groove of '2/ '3 and '3 in KH2 is shown. (D) Highlights of the network of polar interactions around Ade50 to Ade52. The protein and RNA are represented as in panel B.
 
  The above figures are reprinted by permission from Macmillan Publishers Ltd: EMBO J (2005, 24, 3576-3587) copyright 2005.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21233849 F.Werner, and D.Grohmann (2011).
Evolution of multisubunit RNA polymerases in the three domains of life.
  Nat Rev Microbiol, 9, 85-98.  
21358629 J.P.Mackay, J.Font, and D.J.Segal (2011).
The prospects for designer single-stranded RNA-binding proteins.
  Nat Struct Mol Biol, 18, 256-261.  
20385598 I.Díaz-Moreno, D.Hollingworth, G.Kelly, S.Martin, M.García-Mayoral, P.Briata, R.Gherzi, and A.Ramos (2010).
Orientation of the central domains of KSRP and its implications for the interaction with the RNA targets.
  Nucleic Acids Res, 38, 5193-5205.  
20920266 M.Naville, and D.Gautheret (2010).
Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation.
  Genome Biol, 11, R97.  
20399190 Y.Matsumoto, Q.Xu, S.Miyazaki, C.Kaito, C.L.Farr, H.L.Axelrod, H.J.Chiu, H.E.Klock, M.W.Knuth, M.D.Miller, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, K.Sekimizu, and I.A.Wilson (2010).
Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module.
  Structure, 18, 537-547.
PDB code: 3go5
19217394 A.R.Kinjo, and H.Nakamura (2009).
Comprehensive structural classification of ligand-binding motifs in proteins.
  Structure, 17, 234-246.  
19706445 C.Tu, X.Zhou, J.E.Tropea, B.P.Austin, D.S.Waugh, D.L.Court, and X.Ji (2009).
Structure of ERA in complex with the 3' end of 16S rRNA: implications for ribosome biogenesis.
  Proc Natl Acad Sci U S A, 106, 14843-14848.
PDB codes: 3ieu 3iev
19198587 I.Díaz-Moreno, D.Hollingworth, T.A.Frenkiel, G.Kelly, S.Martin, S.Howell, M.García-Mayoral, R.Gherzi, P.Briata, and A.Ramos (2009).
Phosphorylation-mediated unfolding of a KH domain regulates KSRP localization via 14-3-3 binding.
  Nat Struct Mol Biol, 16, 238-246.
PDB code: 2opu
19619561 J.Mercante, A.N.Edwards, A.K.Dubey, P.Babitzke, and T.Romeo (2009).
Molecular geometry of CsrA (RsmA) binding to RNA and its implications for regulated expression.
  J Mol Biol, 392, 511-528.  
19515940 S.Prasch, M.Jurk, R.S.Washburn, M.E.Gottesman, B.M.Wöhrl, and P.Rösch (2009).
RNA-binding specificity of E. coli NusA.
  Nucleic Acids Res, 37, 4736-4742.  
19680289 X.Yang, S.Molimau, G.P.Doherty, E.B.Johnston, J.Marles-Wright, R.Rothnagel, B.Hankamer, R.J.Lewis, and P.J.Lewis (2009).
The structure of bacterial RNA polymerase in complex with the essential transcription elongation factor NusA.
  EMBO Rep, 10, 997.  
18729732 J.W.Roberts, S.Shankar, and J.J.Filter (2008).
RNA polymerase elongation factors.
  Annu Rev Microbiol, 62, 211-233.  
18757535 K.B.Arnvig, S.Zeng, S.Quan, A.Papageorge, N.Zhang, A.C.Villapakkam, and C.L.Squires (2008).
Evolutionary comparison of ribosomal operon antitermination function.
  J Bacteriol, 190, 7251-7257.  
18422648 R.Valverde, L.Edwards, and L.Regan (2008).
Structure and function of KH domains.
  FEBS J, 275, 2712-2726.  
19111659 X.Luo, H.H.Hsiao, M.Bubunenko, G.Weber, D.L.Court, M.E.Gottesman, H.Urlaub, and M.C.Wahl (2008).
Structural and functional analysis of the E. coli NusB-S10 transcription antitermination complex.
  Mol Cell, 32, 791-802.
PDB codes: 3d3b 3d3c
17473849 B.M.Lunde, C.Moore, and G.Varani (2007).
RNA-binding proteins: modular design for efficient function.
  Nat Rev Mol Cell Biol, 8, 479-490.  
17697097 F.Werner (2007).
Structure and function of archaeal RNA polymerases.
  Mol Microbiol, 65, 1395-1404.  
17707400 L.M.Wadley, K.S.Keating, C.M.Duarte, and A.M.Pyle (2007).
Evaluating and learning from RNA pseudotorsional space: quantitative validation of a reduced representation for RNA structure.
  J Mol Biol, 372, 942-957.  
17437720 M.F.García-Mayoral, D.Hollingworth, L.Masino, I.Díaz-Moreno, G.Kelly, R.Gherzi, C.F.Chou, C.Y.Chen, and A.Ramos (2007).
The structure of the C-terminal KH domains of KSRP reveals a noncanonical motif important for mRNA degradation.
  Structure, 15, 485-498.
PDB codes: 2hh2 2hh3
17972918 S.Hare, W.Fischer, R.Williams, L.Terradot, R.Bayliss, R.Haas, and G.Waksman (2007).
Identification, structure and mode of action of a new regulator of the Helicobacter pylori HP0525 ATPase.
  EMBO J, 26, 4926-4934.
PDB code: 2pt7
16982642 S.D.Auweter, F.C.Oberstrass, and F.H.Allain (2006).
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
  Nucleic Acids Res, 34, 4943-4959.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer