spacer
spacer

PDBsum entry 2acq

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
2acq

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
315 a.a. *
Ligands
G6P
NAP
Waters ×182
* Residue conservation analysis
PDB id:
2acq
Name: Oxidoreductase
Title: An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose-6- phosphate
Structure: Aldose reductase. Chain: a. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562
Resolution:
1.76Å     R-factor:   0.166    
Authors: D.H.Harrison,K.M.Bohren,K.H.Gabbay,G.A.Petsko,D.Ringe
Key ref:
D.H.Harrison et al. (1994). An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Biochemistry, 33, 2011-2020. PubMed id: 8117658 DOI: 10.1021/bi00174a006
Date:
15-Apr-94     Release date:   31-Jul-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P15121  (ALDR_HUMAN) -  Aldo-keto reductase family 1 member B1 from Homo sapiens
Seq:
Struc:
316 a.a.
315 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 1: E.C.1.1.1.21  - aldose reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. an alditol + NAD+ = an aldose + NADH + H+
2. an alditol + NADP+ = an aldose + NADPH + H+
alditol
+
NAD(+)
Bound ligand (Het Group name = NAP)
matches with 91.67% similarity
= aldose
+ NADH
+ H(+)
alditol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= aldose
+ NADPH
+ H(+)
   Enzyme class 2: E.C.1.1.1.300  - NADP-retinol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: all-trans-retinol + NADP+ = all-trans-retinal + NADPH + H+
all-trans-retinol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= all-trans-retinal
+ NADPH
+ H(+)
   Enzyme class 3: E.C.1.1.1.372  - D/L-glyceraldehyde reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction:
1. glycerol + NADP+ = L-glyceraldehyde + NADPH + H+
2. glycerol + NADP+ = D-glyceraldehyde + NADPH + H+
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= L-glyceraldehyde
+ NADPH
+ H(+)
glycerol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= D-glyceraldehyde
+ NADPH
+ H(+)
   Enzyme class 4: E.C.1.1.1.54  - allyl-alcohol dehydrogenase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: allyl alcohol + NADP+ = acrolein + NADPH + H+
allyl alcohol
+
NADP(+)
Bound ligand (Het Group name = NAP)
corresponds exactly
= acrolein
+ NADPH
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi00174a006 Biochemistry 33:2011-2020 (1994)
PubMed id: 8117658  
 
 
An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate.
D.H.Harrison, K.M.Bohren, D.Ringe, G.A.Petsko, K.H.Gabbay.
 
  ABSTRACT  
 
Aldose reductase is a NADPH-dependent aldo-keto reductase involved in the pathogenesis of some diabetic and galactosemic complications. The published crystal structure of human aldose reductase [Wilson et al. (1992) Science 257, 81-84] contains a hitherto unexplained electron density positioned within the active site pocket facing the nicotinamide ring of the NADPH and other key active site residues (Tyr48, His110, and Cys298). In this paper we identify the electron density as citrate, which is present in the crystallization buffer (pH 5.0), and provide confirmatory evidence by both kinetic and crystallographic experiments. Citrate is an uncompetitive inhibitor in the forward reaction with respect to aldehyde (reduction of aldehyde), while it is a competitive inhibitor with respect to alcohol in the backward reaction (oxidation of alcohol), indicating that it interacts with the enzyme-NADP(+)-product complex. Citrate can be replaced in the crystalline enzyme complex by cacodylate or glucose 6-phosphate; the structure of each of these complexes shows the specific molecule bound in the active site. All of the structures have been determined to a nominal resolution of 1.76 A and refined to R-factors below 18%. While cacodylate can be bound within the active site under the crystallization conditions, it does not inhibit the wild-type enzyme in solution. Glucose 6-phosphate, however, is a substrate for aldose reductase. The similar location of the negative charges of citrate, cacodylate, and glucose 6-phosphate within the active site suggests an anion-binding site delineated by the C4N of nicotinamide, the OH of Tyr48, and the N epsilon of His110. The location of citrate binding in the active site leads to a plausible catalytic mechanism for aldose reductase.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
18434308 G.Bashiri, C.J.Squire, N.J.Moreland, and E.N.Baker (2008).
Crystal structures of F420-dependent glucose-6-phosphate dehydrogenase FGD1 involved in the activation of the anti-tuberculosis drug candidate PA-824 reveal the basis of coenzyme and substrate binding.
  J Biol Chem, 283, 17531-17541.
PDB codes: 3b4y 3c8n
18300247 J.G.Olsen, L.Pedersen, C.L.Christensen, O.Olsen, and A.Henriksen (2008).
Barley aldose reductase: structure, cofactor binding, and substrate recognition in the aldo/keto reductase 4C family.
  Proteins, 71, 1572-1581.
PDB codes: 2bgq 2bgs 2vdg
18949601 O.A.Barski, S.M.Tipparaju, and A.Bhatnagar (2008).
The aldo-keto reductase superfamily and its role in drug metabolism and detoxification.
  Drug Metab Rev, 40, 553-624.  
18957123 Q.Li, Y.C.Hwang, R.Ananthakrishnan, P.J.Oates, D.Guberski, and R.Ramasamy (2008).
Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts.
  Cardiovasc Diabetol, 7, 33.  
17505104 M.Biadene, I.Hazemann, A.Cousido, S.Ginell, A.Joachimiak, G.M.Sheldrick, A.Podjarny, and T.R.Schneider (2007).
The atomic resolution structure of human aldose reductase reveals that rearrangement of a bound ligand allows the opening of the safety-belt loop.
  Acta Crystallogr D Biol Crystallogr, 63, 665-672.
PDB code: 2j8t
16699182 D.E.Danley (2006).
Crystallization to obtain protein-ligand complexes for structure-aided drug design.
  Acta Crystallogr D Biol Crystallogr, 62, 569-575.  
17083960 J.M.Brownlee, E.Carlson, A.C.Milne, E.Pape, and D.H.Harrison (2006).
Structural and thermodynamic studies of simple aldose reductase-inhibitor complexes.
  Bioorg Chem, 34, 424-444.
PDB codes: 2ine 2inz 2ipw 2iq0 2iqd 2is7 2isf
15146478 E.I.Howard, R.Sanishvili, R.E.Cachau, A.Mitschler, B.Chevrier, P.Barth, V.Lamour, M.Van Zandt, E.Sibley, C.Bon, D.Moras, T.R.Schneider, A.Joachimiak, and A.Podjarny (2004).
Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 A.
  Proteins, 55, 792-804.
PDB code: 1us0
14517983 G.Obmolova, A.Teplyakov, P.P.Khil, A.J.Howard, R.D.Camerini-Otero, and G.L.Gilliland (2003).
Crystal structure of the Escherichia coli Tas protein, an NADP(H)-dependent aldo-keto reductase.
  Proteins, 53, 323-325.
PDB code: 1lqa
11839745 E.Kozma, E.Brown, E.M.Ellis, and A.J.Lapthorn (2002).
The crystal structure of rat liver AKR7A1. A dimeric member of the aldo-keto reductase superfamily.
  J Biol Chem, 277, 16285-16293.
PDB code: 1gve
11606719 M.J.Ondrechen, J.G.Clifton, and D.Ringe (2001).
THEMATICS: a simple computational predictor of enzyme function from structure.
  Proc Natl Acad Sci U S A, 98, 12473-12478.  
10933817 K.M.Bohren, and C.E.Grimshaw (2000).
The sorbinil trap: a predicted dead-end complex confirms the mechanism of aldose reductase inhibition.
  Biochemistry, 39, 9967-9974.  
11015195 K.V.Ramana, B.L.Dixit, S.Srivastava, G.K.Balendiran, S.K.Srivastava, and A.Bhatnagar (2000).
Selective recognition of glutathiolated aldehydes by aldose reductase.
  Biochemistry, 39, 12172-12180.  
10651037 Q.Ye, D.Hyndman, X.Li, T.G.Flynn, and Z.Jia (2000).
Crystal structure of CHO reductase, a member of the aldo-keto reductase superfamily.
  Proteins, 38, 41-48.
PDB code: 1c9w
10737928 S.Khurana, G.Sanli, D.B.Powers, S.Anderson, and M.Blaber (2000).
Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases.
  Proteins, 39, 68-75.  
10384727 H.Rogniaux, A.Van Dorsselaer, P.Barth, J.F.Biellmann, J.Barbanton, M.van Zandt, B.Chevrier, E.Howard, A.Mitschler, N.Potier, L.Urzhumtseva, D.Moras, and A.Podjarny (1999).
Binding of aldose reductase inhibitors: correlation of crystallographic and mass spectrometric studies.
  J Am Soc Mass Spectrom, 10, 635-647.  
10399921 J.M.Gulbis, S.Mann, and R.MacKinnon (1999).
Structure of a voltage-dependent K+ channel beta subunit.
  Cell, 97, 943-952.
PDB code: 1qrq
9918192 L.Costantino, G.Rastelli, P.Vianello, G.Cignarella, and D.Barlocco (1999).
Diabetes complications and their potential prevention: aldose reductase inhibition and other approaches.
  Med Res Rev, 19, 3.  
10557352 L.D.Griffin, and S.H.Mellon (1999).
Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes.
  Proc Natl Acad Sci U S A, 96, 13512-13517.  
11139842 P.J.Oates, and B.L.Mylari (1999).
Aldose reductase inhibitors: therapeutic implications for diabetic complications.
  Expert Opin Investig Drugs, 8, 2095-2119.  
10584067 P.Várnai, W.G.Richards, and P.D.Lyne (1999).
Modelling the catalytic reaction in human aldose reductase.
  Proteins, 37, 218-227.  
9890881 S.Srivastava, S.J.Watowich, J.M.Petrash, S.K.Srivastava, and A.Bhatnagar (1999).
Structural and kinetic determinants of aldehyde reduction by aldose reductase.
  Biochemistry, 38, 42-54.  
9521675 B.P.Schlegel, J.M.Jez, and T.M.Penning (1998).
Mutagenesis of 3 alpha-hydroxysteroid dehydrogenase reveals a "push-pull" mechanism for proton transfer in aldo-keto reductases.
  Biochemistry, 37, 3538-3548.  
9657682 J.M.Jez, and T.M.Penning (1998).
Engineering steroid 5 beta-reductase activity into rat liver 3 alpha-hydroxysteroid dehydrogenase.
  Biochemistry, 37, 9695-9703.  
9695797 M.J.Crabbe, and D.Goode (1998).
Aldose reductase: a window to the treatment of diabetic complications?
  Prog Retin Eye Res, 17, 313-383.  
9737870 S.Srivastava, T.M.Harter, A.Chandra, A.Bhatnagar, S.K.Srivastava, and J.M.Petrash (1998).
Kinetic studies of FR-1, a growth factor-inducible aldo-keto reductase.
  Biochemistry, 37, 12909-12917.  
9546197 Y.S.Lee, M.Hodoscek, B.R.Brooks, and P.F.Kador (1998).
Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics.
  Biophys Chem, 70, 203-216.  
9211842 A.D.Mesecar, B.L.Stoddard, and D.E.Koshland (1997).
Orbital steering in the catalytic power of enzymes: small structural changes with large catalytic consequences.
  Science, 277, 202-206.
PDB codes: 1ai2 1ai3
9195881 A.Urzhumtsev, F.Tête-Favier, A.Mitschler, J.Barbanton, P.Barth, L.Urzhumtseva, J.F.Biellmann, A.Podjarny, and D.Moras (1997).
A 'specificity' pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil.
  Structure, 5, 601-612.
PDB codes: 1ah0 1ah3 1ah4
9261071 M.J.Bennett, R.H.Albert, J.M.Jez, H.Ma, T.M.Penning, and M.Lewis (1997).
Steroid recognition and regulation of hormone action: crystal structure of testosterone and NADP+ bound to 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase.
  Structure, 5, 799-812.
PDB code: 1afs
9030749 N.Potier, P.Barth, D.Tritsch, J.F.Biellmann, and A.Van Dorsselaer (1997).
Study of non-covalent enzyme-inhibitor complexes of aldose reductase by electrospray mass spectrometry.
  Eur J Biochem, 243, 274-282.  
8718859 M.J.Bennett, B.P.Schlegel, J.M.Jez, T.M.Penning, and M.Lewis (1996).
Structure of 3 alpha-hydroxysteroid/dihydrodiol dehydrogenase complexed with NADP+.
  Biochemistry, 35, 10702-10711.
PDB code: 1lwi
8756319 M.J.Crabbe, D.Goode, and S.P.Wolff (1996).
Aldose reductase: black sheep or skeleton in the cupboard?
  Nat Struct Biol, 3, 659-661.  
8913694 M.von Itzstein, and P.Colman (1996).
Design and synthesis of carbohydrate-based inhibitors of protein-carbohydrate interactions.
  Curr Opin Struct Biol, 6, 703-709.  
8672472 N.Tanaka, T.Nonaka, T.Tanabe, T.Yoshimoto, D.Tsuru, and Y.Mitsui (1996).
Crystal structures of the binary and ternary complexes of 7 alpha-hydroxysteroid dehydrogenase from Escherichia coli.
  Biochemistry, 35, 7715-7730.
PDB codes: 1ahh 1ahi 1fmc
8916913 O.A.Barski, K.H.Gabbay, and K.M.Bohren (1996).
The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity.
  Biochemistry, 35, 14276-14280.  
  8762144 S.Janecek (1996).
Invariant glycines and prolines flanking in loops the strand beta 2 of various (alpha/beta)8-barrel enzymes: a hidden homology?
  Protein Sci, 5, 1136-1143.  
8780524 T.Nakano, and J.M.Petrash (1996).
Kinetic and spectroscopic evidence for active site inhibition of human aldose reductase.
  Biochemistry, 35, 11196-11202.  
7811733 D.A.Carper, T.C.Hohman, and S.E.Old (1995).
Residues affecting the catalysis and inhibition of rat lens aldose reductase.
  Biochim Biophys Acta, 1246, 67-73.  
7552737 D.H.Harrison (1995).
All in the family.
  Nat Struct Biol, 2, 719-720.  
7552731 O.el-Kabbani, K.Judge, S.L.Ginell, D.A.Myles, L.J.DeLucas, and T.G.Flynn (1995).
Structure of porcine aldehyde reductase holoenzyme.
  Nat Struct Biol, 2, 687-692.  
7622508 T.J.Kubiseski, and T.G.Flynn (1995).
Studies on human aldose reductase. Probing the role of arginine 268 by site-directed mutagenesis.
  J Biol Chem, 270, 16911-16917.  
7714750 V.J.Demopoulos, and E.Rekka (1995).
Isomeric benzoylpyrroleacetic acids: some structural aspects for aldose reductase inhibitory and anti-inflammatory activities.
  J Pharm Sci, 84, 79-82.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer