|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nature
437:505-511
(2005)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structures of complement component C3 provide insights into the function and evolution of immunity.
|
|
B.J.Janssen,
E.G.Huizinga,
H.C.Raaijmakers,
A.Roos,
M.R.Daha,
K.Nilsson-Ekdahl,
B.Nilsson,
P.Gros.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The mammalian complement system is a phylogenetically ancient cascade system
that has a major role in innate and adaptive immunity. Activation of component
C3 (1,641 residues) is central to the three complement pathways and results in
inflammation and elimination of self and non-self targets. Here we present
crystal structures of native C3 and its final major proteolytic fragment C3c.
The structures reveal thirteen domains, nine of which were unpredicted, and
suggest that the proteins of the alpha2-macroglobulin family evolved from a core
of eight homologous domains. A double mechanism prevents hydrolysis of the
thioester group, essential for covalent attachment of activated C3 to target
surfaces. Marked conformational changes in the alpha-chain, including movement
of a critical interaction site through a ring formed by the domains of the
beta-chain, indicate an unprecedented, conformation-dependent mechanism of
activation, regulation and biological function of C3.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 1.
Figure 1: Structures of human complement components C3 and C3c.
a, b, Ribbon representation of native C3 (13 domains) and C3c
(10 domains), respectively. Also shown are intact thioester (red
spheres), anchor region (grey) and 'NT
(black). c, Domain sequence and arrangements in C3 and C3c. The
colour scheme matches that in a, b. Shown are the thioester site
(white triangle), disulphide bridges, glycan positions (for
details see Supplementary Figs 3 and 6) and cleavage sites.
Sequential proteolysis from C3 to C3c is indicated. d, e,
Intertwined domains. d, MG6 intertwines the -
and -chain
of mature C3. MG6^ ,
green; MG6^ ,
pink. e, Intertwined CUB. CUB^g, cyan; CUB^f, red.
Fibronectin-type 3 and CUB strand numbering are indicated.
|
 |
Figure 5.
Figure 5: The alpha- 'NT
region (residues 727-744) slips through the beta- -ring.
a, Two views, rotated by 180°, of the cone formed by ANA, MG3
and MG8 (surface representation), and residues 730-744 (stick
representation). Residues important for factor B binding are
labelled. b, The 'NT
regions are on opposite sides of the molecule in C3 and C3c. In
C3 this region is covalently linked to ANA; the scissile bond
726-727 is part of a disordered loop 720-729 (dashed line). Also
shown are surface contours of C3 and C3c (transparent light
grey), residues 727-767 (green sticks), ANA and MG6 (ribbons),
and MG2 and MG3 of the -ring
(spheres).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nature
(2005,
437,
505-511)
copyright 2005.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
N.S.Laursen,
K.R.Andersen,
I.Braren,
E.Spillner,
L.Sottrup-Jensen,
and
G.R.Andersen
(2011).
Substrate recognition by complement convertases revealed in the C5-cobra venom factor complex.
|
| |
EMBO J,
30,
606-616.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
U.R.Nilsson,
L.Funke,
B.Nilsson,
and
K.N.Ekdahl
(2011).
Two conformational forms of target-bound iC3b that distinctively bind complement receptors 1 and 2 and two specific monoclonal antibodies.
|
| |
Ups J Med Sci,
116,
26-33.
|
 |
|
|
|
|
 |
D.Serruto,
R.Rappuoli,
M.Scarselli,
P.Gros,
and
J.A.van Strijp
(2010).
Molecular mechanisms of complement evasion: learning from staphylococci and meningococci.
|
| |
Nat Rev Microbiol,
8,
393-399.
|
 |
|
|
|
|
 |
J.R.Dunkelberger,
and
W.C.Song
(2010).
Complement and its role in innate and adaptive immune responses.
|
| |
Cell Res,
20,
34-50.
|
 |
|
|
|
|
 |
O.A.Hamad,
P.H.Nilsson,
D.Wouters,
J.D.Lambris,
K.N.Ekdahl,
and
B.Nilsson
(2010).
Complement component C3 binds to activated normal platelets without preceding proteolytic activation and promotes binding to complement receptor 1.
|
| |
J Immunol,
184,
2686-2692.
|
 |
|
|
|
|
 |
P.K.Mallik,
K.Nishikawa,
A.J.Millis,
and
H.Shi
(2010).
Commandeering a biological pathway using aptamer-derived molecular adaptors.
|
| |
Nucleic Acids Res,
38,
e93.
|
 |
|
|
|
|
 |
R.H.Baxter,
S.Steinert,
Y.Chelliah,
G.Volohonsky,
E.A.Levashina,
and
J.Deisenhofer
(2010).
A heterodimeric complex of the LRR proteins LRIM1 and APL1C regulates complement-like immunity in Anopheles gambiae.
|
| |
Proc Natl Acad Sci U S A,
107,
16817-16822.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.Martínez-Barricarte,
M.Heurich,
F.Valdes-Cañedo,
E.Vazquez-Martul,
E.Torreira,
T.Montes,
A.Tortajada,
S.Pinto,
M.Lopez-Trascasa,
B.P.Morgan,
O.Llorca,
C.L.Harris,
and
S.Rodríguez de Córdoba
(2010).
Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation.
|
| |
J Clin Invest,
120,
3702-3712.
|
 |
|
|
|
|
 |
T.Liang,
N.Wang,
W.Li,
A.Li,
J.Wang,
J.Cui,
N.Liu,
Y.Li,
L.Li,
G.Yang,
Z.Du,
D.Li,
K.He,
and
G.Wang
(2010).
Identification of complement C3f-desArg and its derivative for acute leukemia diagnosis and minimal residual disease assessment.
|
| |
Proteomics,
10,
90-98.
|
 |
|
|
|
|
 |
W.J.Cook,
N.Galakatos,
W.C.Boyar,
R.L.Walter,
and
S.E.Ealick
(2010).
Structure of human desArg-C5a.
|
| |
Acta Crystallogr D Biol Crystallogr,
66,
190-197.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Shen,
N.Tolić,
T.Liu,
R.Zhao,
B.O.Petritis,
M.A.Gritsenko,
D.G.Camp,
R.J.Moore,
S.O.Purvine,
F.J.Esteva,
and
R.D.Smith
(2010).
Blood peptidome-degradome profile of breast cancer.
|
| |
PLoS One,
5,
e13133.
|
 |
|
|
|
|
 |
A.A.McCarthy,
S.Brockhauser,
D.Nurizzo,
P.Theveneau,
T.Mairs,
D.Spruce,
M.Guijarro,
M.Lesourd,
R.B.Ravelli,
and
S.McSweeney
(2009).
A decade of user operation on the macromolecular crystallography MAD beamline ID14-4 at the ESRF.
|
| |
J Synchrotron Radiat,
16,
803-812.
|
 |
|
|
|
|
 |
B.J.Janssen,
L.Gomes,
R.I.Koning,
D.I.Svergun,
A.J.Koster,
D.C.Fritzinger,
C.W.Vogel,
and
P.Gros
(2009).
Insights into complement convertase formation based on the structure of the factor B-cobra venom factor complex.
|
| |
EMBO J,
28,
2469-2478.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Torreira,
A.Tortajada,
T.Montes,
S.R.de Córdoba,
and
O.Llorca
(2009).
3D structure of the C3bB complex provides insights into the activation and regulation of the complement alternative pathway convertase.
|
| |
Proc Natl Acad Sci U S A,
106,
882-887.
|
 |
|
|
|
|
 |
J.Wu,
Y.Q.Wu,
D.Ricklin,
B.J.Janssen,
J.D.Lambris,
and
P.Gros
(2009).
Structure of complement fragment C3b-factor H and implications for host protection by complement regulators.
|
| |
Nat Immunol,
10,
728-733.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.J.Katschke,
S.Stawicki,
J.Yin,
M.Steffek,
H.Xi,
L.Sturgeon,
P.E.Hass,
K.M.Loyet,
L.Deforge,
Y.Wu,
M.van Lookeren Campagne,
and
C.Wiesmann
(2009).
Structural and Functional Analysis of a C3b-specific Antibody That Selectively Inhibits the Alternative Pathway of Complement.
|
| |
J Biol Chem,
284,
10473-10479.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.W.Ferrara,
M.A.Borden,
and
H.Zhang
(2009).
Lipid-shelled vehicles: engineering for ultrasound molecular imaging and drug delivery.
|
| |
Acc Chem Res,
42,
881-892.
|
 |
|
|
|
|
 |
M.A.Cole,
S.E.Tully,
A.W.Dodds,
J.N.Arnold,
G.E.Boldt,
R.B.Sim,
J.Offer,
and
P.Wentworth
(2009).
A chemical approach to immunoprotein engineering: chemoselective functionalization of thioester proteins in their native state.
|
| |
Chembiochem,
10,
1340-1343.
|
 |
|
|
|
|
 |
M.G.Castillo,
M.S.Goodson,
and
M.McFall-Ngai
(2009).
Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes.
|
| |
Dev Comp Immunol,
33,
69-76.
|
 |
|
|
|
|
 |
P.J.Lachmann,
and
R.A.Smith
(2009).
Taking complement to the clinic--has the time finally come?
|
| |
Scand J Immunol,
69,
471-478.
|
 |
|
|
|
|
 |
S.H.Rooijakkers,
J.Wu,
M.Ruyken,
R.van Domselaar,
K.L.Planken,
A.Tzekou,
D.Ricklin,
J.D.Lambris,
B.J.Janssen,
J.A.van Strijp,
and
P.Gros
(2009).
Structural and functional implications of the alternative complement pathway C3 convertase stabilized by a staphylococcal inhibitor.
|
| |
Nat Immunol,
10,
721-727.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.Krishnan,
K.Ponnuraj,
Y.Xu,
K.Macon,
J.E.Volanakis,
and
S.V.Narayana
(2009).
The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVFBb.
|
| |
Structure,
17,
611-619.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
F.Bexborn,
P.O.Andersson,
H.Chen,
B.Nilsson,
and
K.N.Ekdahl
(2008).
The tick-over theory revisited: formation and regulation of the soluble alternative complement C3 convertase (C3(H2O)Bb).
|
| |
Mol Immunol,
45,
2370-2379.
|
 |
|
|
|
|
 |
F.Fredslund,
N.S.Laursen,
P.Roversi,
L.Jenner,
C.L.Oliveira,
J.S.Pedersen,
M.A.Nunn,
S.M.Lea,
R.Discipio,
L.Sottrup-Jensen,
and
G.R.Andersen
(2008).
Structure of and influence of a tick complement inhibitor on human complement component 5.
|
| |
Nat Immunol,
9,
753-760.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.G.Hocking,
A.P.Herbert,
D.Kavanagh,
D.C.Soares,
V.P.Ferreira,
M.K.Pangburn,
D.Uhrín,
and
P.N.Barlow
(2008).
Structure of the N-terminal region of complement factor H and conformational implications of disease-linked sequence variations.
|
| |
J Biol Chem,
283,
9475-9487.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.D.Burman,
E.Leung,
K.L.Atkins,
M.N.O'Seaghdha,
L.Lango,
P.Bernadó,
S.Bagby,
D.I.Svergun,
T.J.Foster,
D.E.Isenman,
and
J.M.van den Elsen
(2008).
Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus.
|
| |
J Biol Chem,
283,
17579-17593.
|
 |
|
|
|
|
 |
L.Z.Holland,
R.Albalat,
K.Azumi,
E.Benito-Gutiérrez,
M.J.Blow,
M.Bronner-Fraser,
F.Brunet,
T.Butts,
S.Candiani,
L.J.Dishaw,
D.E.Ferrier,
J.Garcia-Fernàndez,
J.J.Gibson-Brown,
C.Gissi,
A.Godzik,
F.Hallböök,
D.Hirose,
K.Hosomichi,
T.Ikuta,
H.Inoko,
M.Kasahara,
J.Kasamatsu,
T.Kawashima,
A.Kimura,
M.Kobayashi,
Z.Kozmik,
K.Kubokawa,
V.Laudet,
G.W.Litman,
A.C.McHardy,
D.Meulemans,
M.Nonaka,
R.P.Olinski,
Z.Pancer,
L.A.Pennacchio,
M.Pestarino,
J.P.Rast,
I.Rigoutsos,
M.Robinson-Rechavi,
G.Roch,
H.Saiga,
Y.Sasakura,
M.Satake,
Y.Satou,
M.Schubert,
N.Sherwood,
T.Shiina,
N.Takatori,
J.Tello,
P.Vopalensky,
S.Wada,
A.Xu,
Y.Ye,
K.Yoshida,
F.Yoshizaki,
J.K.Yu,
Q.Zhang,
C.M.Zmasek,
P.J.de Jong,
K.Osoegawa,
N.H.Putnam,
D.S.Rokhsar,
N.Satoh,
and
P.W.Holland
(2008).
The amphioxus genome illuminates vertebrate origins and cephalochordate biology.
|
| |
Genome Res,
18,
1100-1111.
|
 |
|
|
|
|
 |
M.A.Borden,
H.Zhang,
R.J.Gillies,
P.A.Dayton,
and
K.W.Ferrara
(2008).
A stimulus-responsive contrast agent for ultrasound molecular imaging.
|
| |
Biomaterials,
29,
597-606.
|
 |
|
|
|
|
 |
M.C.Schuster,
D.Ricklin,
K.Papp,
K.S.Molnar,
S.J.Coales,
Y.Hamuro,
G.Sfyroera,
H.Chen,
M.S.Winters,
and
J.D.Lambris
(2008).
Dynamic structural changes during complement C3 activation analyzed by hydrogen/deuterium exchange mass spectrometry.
|
| |
Mol Immunol,
45,
3142-3151.
|
 |
|
|
|
|
 |
N.Doan,
and
P.G.Gettins
(2008).
{alpha}-Macroglobulins Are Present in Some Gram-negative Bacteria: CHARACTERIZATION OF THE {alpha}2-MACROGLOBULIN FROM ESCHERICHIA COLI.
|
| |
J Biol Chem,
283,
28747-28756.
|
 |
|
|
|
|
 |
P.Gros,
F.J.Milder,
and
B.J.Janssen
(2008).
Complement driven by conformational changes.
|
| |
Nat Rev Immunol,
8,
48-58.
|
 |
|
|
|
|
 |
S.A.Blandin,
E.Marois,
and
E.A.Levashina
(2008).
Antimalarial responses in Anopheles gambiae: from a complement-like protein to a complement-like pathway.
|
| |
Cell Host Microbe,
3,
364-374.
|
 |
|
|
|
|
 |
V.Frémeaux-Bacchi,
E.C.Miller,
M.K.Liszewski,
L.Strain,
J.Blouin,
A.L.Brown,
N.Moghal,
B.S.Kaplan,
R.A.Weiss,
K.Lhotta,
G.Kapur,
T.Mattoo,
H.Nivet,
W.Wong,
S.Gie,
B.Hurault de Ligny,
M.Fischbach,
R.Gupta,
R.Hauhart,
V.Meunier,
C.Loirat,
M.A.Dragon-Durey,
W.H.Fridman,
B.J.Janssen,
T.H.Goodship,
and
J.P.Atkinson
(2008).
Mutations in complement C3 predispose to development of atypical hemolytic uremic syndrome.
|
| |
Blood,
112,
4948-4952.
|
 |
|
|
|
|
 |
B.J.Janssen,
E.F.Halff,
J.D.Lambris,
and
P.Gros
(2007).
Structure of compstatin in complex with complement component C3c reveals a new mechanism of complement inhibition.
|
| |
J Biol Chem,
282,
29241-29247.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.J.Janssen,
R.J.Read,
A.T.Brünger,
and
P.Gros
(2007).
Crystallography: crystallographic evidence for deviating C3b structure.
|
| |
Nature,
448,
E1.
|
 |
|
|
|
|
 |
C.Mulakala,
J.D.Lambris,
and
Y.Kaznessis
(2007).
A simple, yet highly accurate, QSAR model captures the complement inhibitory activity of compstatin.
|
| |
Bioorg Med Chem,
15,
1638-1644.
|
 |
|
|
|
|
 |
C.N.Scanlan,
J.Offer,
N.Zitzmann,
and
R.A.Dwek
(2007).
Exploiting the defensive sugars of HIV-1 for drug and vaccine design.
|
| |
Nature,
446,
1038-1045.
|
 |
|
|
|
|
 |
D.Ricklin,
and
J.D.Lambris
(2007).
Complement-targeted therapeutics.
|
| |
Nat Biotechnol,
25,
1265-1275.
|
 |
|
|
|
|
 |
M.Hammel,
G.Sfyroera,
D.Ricklin,
P.Magotti,
J.D.Lambris,
and
B.V.Geisbrecht
(2007).
A structural basis for complement inhibition by Staphylococcus aureus.
|
| |
Nat Immunol,
8,
430-437.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
M.Hammel,
G.Sfyroera,
S.Pyrpassopoulos,
D.Ricklin,
K.X.Ramyar,
M.Pop,
Z.Jin,
J.D.Lambris,
and
B.V.Geisbrecht
(2007).
Characterization of Ehp, a secreted complement inhibitory protein from Staphylococcus aureus.
|
| |
J Biol Chem,
282,
30051-30061.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Pasupuleti,
B.Walse,
E.A.Nordahl,
M.Mörgelin,
M.Malmsten,
and
A.Schmidtchen
(2007).
Preservation of antimicrobial properties of complement peptide C3a, from invertebrates to humans.
|
| |
J Biol Chem,
282,
2520-2528.
|
 |
|
|
|
|
 |
M.van Lookeren Campagne,
C.Wiesmann,
and
E.J.Brown
(2007).
Macrophage complement receptors and pathogen clearance.
|
| |
Cell Microbiol,
9,
2095-2102.
|
 |
|
|
|
|
 |
P.Roversi,
O.Lissina,
S.Johnson,
N.Ahmat,
G.C.Paesen,
K.Ploss,
W.Boland,
M.A.Nunn,
and
S.M.Lea
(2007).
The structure of OMCI, a novel lipocalin inhibitor of the complement system.
|
| |
J Mol Biol,
369,
784-793.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.H.Baxter,
C.I.Chang,
Y.Chelliah,
S.Blandin,
E.A.Levashina,
and
J.Deisenhofer
(2007).
Structural basis for conserved complement factor-like function in the antimalarial protein TEP1.
|
| |
Proc Natl Acad Sci U S A,
104,
11615-11620.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.P.Rother,
S.A.Rollins,
C.F.Mojcik,
R.A.Brodsky,
and
L.Bell
(2007).
Discovery and development of the complement inhibitor eculizumab for the treatment of paroxysmal nocturnal hemoglobinuria.
|
| |
Nat Biotechnol,
25,
1256-1264.
|
 |
|
|
|
|
 |
S.A.Blandin,
and
E.A.Levashina
(2007).
Phagocytosis in mosquito immune responses.
|
| |
Immunol Rev,
219,
8.
|
 |
|
|
|
|
 |
S.Arandjelovic,
N.Dragojlovic,
X.Li,
R.R.Myers,
W.M.Campana,
and
S.L.Gonias
(2007).
A derivative of the plasma protease inhibitor alpha(2)-macroglobulin regulates the response to peripheral nerve injury.
|
| |
J Neurochem,
103,
694-705.
|
 |
|
|
|
|
 |
A.Abdul Ajees,
K.Gunasekaran,
J.E.Volanakis,
S.V.Narayana,
G.J.Kotwal,
and
H.M.Murthy
(2006).
The structure of complement C3b provides insights into complement activation and regulation.
|
| |
Nature,
444,
221-225.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.P.Herbert,
D.Uhrín,
M.Lyon,
M.K.Pangburn,
and
P.N.Barlow
(2006).
Disease-associated sequence variations congregate in a polyanion recognition patch on human factor H revealed in three-dimensional structure.
|
| |
J Biol Chem,
281,
16512-16520.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.J.Janssen,
A.Christodoulidou,
A.McCarthy,
J.D.Lambris,
and
P.Gros
(2006).
Structure of C3b reveals conformational changes that underlie complement activity.
|
| |
Nature,
444,
213-216.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
C.Wiesmann,
K.J.Katschke,
J.Yin,
K.Y.Helmy,
M.Steffek,
W.J.Fairbrother,
S.A.McCallum,
L.Embuscado,
L.DeForge,
P.E.Hass,
and
M.van Lookeren Campagne
(2006).
Structure of C3b in complex with CRIg gives insights into regulation of complement activation.
|
| |
Nature,
444,
217-220.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
F.J.Milder,
H.C.Raaijmakers,
M.D.Vandeputte,
A.Schouten,
E.G.Huizinga,
R.A.Romijn,
W.Hemrika,
A.Roos,
M.R.Daha,
and
P.Gros
(2006).
Structure of complement component C2A: implications for convertase formation and substrate binding.
|
| |
Structure,
14,
1587-1597.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
J.N.Arnold,
R.Wallis,
A.C.Willis,
D.J.Harvey,
L.Royle,
R.A.Dwek,
P.M.Rudd,
and
R.B.Sim
(2006).
Interaction of mannan binding lectin with alpha2 macroglobulin via exposed oligomannose glycans: a conserved feature of the thiol ester protein family?
|
| |
J Biol Chem,
281,
6955-6963.
|
 |
|
|
|
|
 |
L.A.Pirofski
(2006).
Of mice and men, revisited: new insights into an ancient molecule from studies of complement activation by Cryptococcus neoformans.
|
| |
Infect Immun,
74,
3079-3084.
|
 |
|
|
|
|
 |
M.Carroll
(2006).
Immunology: exposure of an executioner.
|
| |
Nature,
444,
159-160.
|
 |
|
|
|
|
 |
M.Nonaka,
and
A.Kimura
(2006).
Genomic view of the evolution of the complement system.
|
| |
Immunogenetics,
58,
701-713.
|
 |
|
|
|
|
 |
N.Nishida,
T.Walz,
and
T.A.Springer
(2006).
Structural transitions of complement component C3 and its activation products.
|
| |
Proc Natl Acad Sci U S A,
103,
19737-19742.
|
 |
|
|
|
|
 |
T.A.Springer
(2006).
Complement and the multifaceted functions of VWA and integrin I domains.
|
| |
Structure,
14,
1611-1616.
|
 |
|
|
|
|
 |
T.S.Jokiranta,
V.P.Jaakola,
M.J.Lehtinen,
M.Pärepalo,
S.Meri,
and
A.Goldman
(2006).
Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome.
|
| |
EMBO J,
25,
1784-1794.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.S.Jokiranta
(2006).
C3b and factor H: key components of the complement system.
|
| |
Expert Rev Clin Immunol,
2,
775-786.
|
 |
|
|
|
|
 |
R.Liddington,
and
L.Bankston
(2005).
Structural biology: origins of chemical biodefence.
|
| |
Nature,
437,
484-485.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
codes are
shown on the right.
|
');
}
}
 |