spacer
spacer

PDBsum entry 2i7b

Go to PDB code: 
protein metals links
Transferase PDB id
2i7b

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
262 a.a. *
Metals
_HG ×4
Waters ×186
* Residue conservation analysis
PDB id:
2i7b
Name: Transferase
Title: Structure of the naturally occuring mutant of human abo(h) blood group b glycosyltransferase: gtb/a268t
Structure: Alpha 1-3-galactosyltransferase. Chain: a. Synonym: transferase a, alpha 1-3-n- acetylgalactosaminyltransferase. Transferase b. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Gene: abo. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
1.99Å     R-factor:   0.187     R-free:   0.231
Authors: J.A.Letts,S.V.Evans
Key ref: B.Hosseini-Maaf et al. (2007). Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase. Transfusion, 47, 864-875. PubMed id: 17465952
Date:
30-Aug-06     Release date:   22-May-07    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P16442  (BGAT_HUMAN) -  Histo-blood group ABO system transferase from Homo sapiens
Seq:
Struc:
354 a.a.
262 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 1: E.C.2.4.1.37  - fucosylgalactoside 3-alpha-galactosyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: an alpha-L-fucosyl-(1->2)-beta-D-galactosyl derivative + UDP-alpha-D- galactose = an alpha-D-galactosyl-(1->3)-[alpha-L-fucosyl-(1->2)]-beta-D- galactosyl derivative + UDP + H+
alpha-L-fucosyl-(1->2)-beta-D-galactosyl derivative
+ UDP-alpha-D- galactose
= alpha-D-galactosyl-(1->3)-[alpha-L-fucosyl-(1->2)]-beta-D- galactosyl derivative
+ UDP
+ H(+)
   Enzyme class 2: E.C.2.4.1.40  - glycoprotein-fucosylgalactoside alpha-N-acetylgalactosaminyltransferase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: an alpha-L-fucosyl-(1->2)-beta-D-galactosyl derivative + UDP-N-acetyl- alpha-D-galactosamine = an N-acetyl-alpha-D-galactosaminyl-(1->3)-[alpha- L-fucosyl-(1->2)]-beta-D-galactosyl derivative + UDP + H+
alpha-L-fucosyl-(1->2)-beta-D-galactosyl derivative
+ UDP-N-acetyl- alpha-D-galactosamine
= N-acetyl-alpha-D-galactosaminyl-(1->3)-[alpha- L-fucosyl-(1->2)]-beta-D-galactosyl derivative
+ UDP
+ H(+)
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
Transfusion 47:864-875 (2007)
PubMed id: 17465952  
 
 
Structural basis for red cell phenotypic changes in newly identified, naturally occurring subgroup mutants of the human blood group B glycosyltransferase.
B.Hosseini-Maaf, J.A.Letts, M.Persson, E.Smart, P.Y.LePennec, H.Hustinx, Z.Zhao, M.M.Palcic, S.V.Evans, M.A.Chester, M.L.Olsson.
 
  ABSTRACT  
 
BACKGROUND: Four amino-acid-changing polymorphisms differentiate the blood group A and B alleles. Multiple missense mutations are associated with weak expression of A and B antigens but the structural changes causing subgroups have not been studied. STUDY DESIGN AND METHODS: Individuals or families having serologically weak B antigen on their red cells were studied. Alleles were characterized by sequencing of exons 1 through 7 in the ABO gene. Single crystal X-ray diffraction, three-dimensional-structure molecular modeling, and enzyme kinetics showed the effects of the B allele mutations on the glycosyltransferases. RESULTS: Seven unrelated individuals with weak B phenotypes possessed seven different B alleles, five of which are new and result in substitution of highly conserved amino acids: M189V, I192T, F216I, D262N, and A268T. One of these (F216I) was due to a hybrid allele resulting from recombination between B and O(1v) alleles. The two other alleles were recently described in other ethnic groups and result in V175M and L232P. The first crystal-structure determination (A268T) of a subgroup glycosyltransferase and molecular modeling (F216I, D262N, L232P) indicated conformational changes in the enzyme that could explain the diminished enzyme activity. The effect of three mutations could not be visualized since they occur in a disordered loop. CONCLUSION: The genetic background for B(w) phenotypes is very heterogeneous but usually arises through seemingly random missense mutations throughout the last ABO exon. The targeted amino acid residues, however, are well conserved during evolution. Based on analysis of the resulting structural changes in the glycosyltransferase, the mutations are likely to disrupt molecular bonds of importance for enzymatic function.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
18518825 L.L.Lairson, B.Henrissat, G.J.Davies, and S.G.Withers (2008).
Glycosyltransferases: structures, functions, and mechanisms.
  Annu Rev Biochem, 77, 521-555.  
18832934 M.H.Yazer, B.Hosseini-Maaf, and M.L.Olsson (2008).
Blood grouping discrepancies between ABO genotype and phenotype caused by O alleles.
  Curr Opin Hematol, 15, 618-624.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time.

 

spacer

spacer