spacer
spacer

PDBsum entry 2fc2

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
2fc2

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
362 a.a. *
Ligands
HEM-_NO
HBI ×2
HAR ×2
_NO ×2
HEM
Waters ×699
* Residue conservation analysis
PDB id:
2fc2
Name: Oxidoreductase
Title: No-heme complex in a bacterial nitric oxide synthase. An fe(iii)-no may cause nitrosation.
Structure: Nitric oxide synthase. Chain: a, b. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Expressed in: escherichia coli. Expression_system_taxid: 562
Biol. unit: Dimer (from PDB file)
Resolution:
2.20Å     R-factor:   0.259     R-free:   0.274
Authors: K.Pant,B.R.Crane
Key ref:
K.Pant and B.R.Crane (2006). Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation. Biochemistry, 45, 2537-2544. PubMed id: 16489746 DOI: 10.1021/bi0518848
Date:
10-Dec-05     Release date:   22-Aug-06    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
O34453  (NOSO_BACSU) -  Nitric oxide synthase oxygenase from Bacillus subtilis (strain 168)
Seq:
Struc:
363 a.a.
363 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 15 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.14.14.47  - nitric-oxide synthase (flavodoxin).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 3 reduced [flavodoxin] + 2 L-arginine + 4 O2 = 3 oxidized [flavodoxin] + 2 L-citrulline + 2 nitric oxide + 4 H2O + 5 H+
3 × reduced [flavodoxin]
Bound ligand (Het Group name = HAR)
matches with 92.31% similarity
+ 2 × L-arginine
+ 4 × O2
= 3 × oxidized [flavodoxin]
+ 2 × L-citrulline
+ 2 × nitric oxide
+ 4 × H2O
Bound ligand (Het Group name = NO)
corresponds exactly
+ 5 × H(+)
      Cofactor: 5,6,7,8-tetrahydrobiopterin; Ferriheme b
5,6,7,8-tetrahydrobiopterin
Ferriheme b
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi0518848 Biochemistry 45:2537-2544 (2006)
PubMed id: 16489746  
 
 
Nitrosyl-heme structures of Bacillus subtilis nitric oxide synthase have implications for understanding substrate oxidation.
K.Pant, B.R.Crane.
 
  ABSTRACT  
 
The crystal structures of nitrosyl-heme complexes of a prokaryotic nitric oxide synthase (NOS) from Bacillus subtilis (bsNOS) reveal changes in active-site hydrogen bonding in the presence of the intermediate N(omega)-hydroxy-l-arginine (NOHA) compared to the substrate l-arginine (l-Arg). Correlating with a Val-to-Ile residue substitution in the bsNOS heme pocket, the Fe(II)-NO complex with both l-Arg and NOHA is more bent than the Fe(II)-NO, l-Arg complex of mammalian eNOS [Li, H., Raman, C. S., Martasek, P., Masters, B. S. S., and Poulos, T. L. (2001) Biochemistry 40, 5399-5406]. Structures of the Fe(III)-NO complex with NOHA show a nearly linear nitrosyl group, and in one subunit, partial nitrosation of bound NOHA. In the Fe(II)-NO complexes, the protonated NOHA N(omega) atom forms a short hydrogen bond with the heme-coordinated NO nitrogen, but active-site water molecules are out of hydrogen bonding range with the distal NO oxygen. In contrast, the l-Arg guanidinium interacts more weakly and equally with both NO atoms, and an active-site water molecule hydrogen bonds to the distal NO oxygen. This difference in hydrogen bonding to the nitrosyl group by the two substrates indicates that interactions provided by NOHA may preferentially stabilize an electrophilic peroxo-heme intermediate in the second step of NOS catalysis.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20218710 A.V.Soldatova, M.Ibrahim, J.S.Olson, R.S.Czernuszewicz, and T.G.Spiro (2010).
New light on NO bonding in Fe(III) heme proteins from resonance raman spectroscopy and DFT modeling.
  J Am Chem Soc, 132, 4614-4625.  
20370423 B.R.Crane, J.Sudhamsu, and B.A.Patel (2010).
Bacterial nitric oxide synthases.
  Annu Rev Biochem, 79, 445-470.  
19951943 C.Giroud, M.Moreau, T.A.Mattioli, V.Balland, J.L.Boucher, Y.Xu-Li, D.J.Stuehr, and J.Santolini (2010).
Role of arginine guanidinium moiety in nitric-oxide synthase mechanism of oxygen activation.
  J Biol Chem, 285, 7233-7245.  
19375324 J.Sudhamsu, and B.R.Crane (2009).
Bacterial nitric oxide synthases: what are they good for?
  Trends Microbiol, 17, 212-218.  
19156270 R.Wang, M.A.Camacho-Fernandez, W.Xu, J.Zhang, and L.Li (2009).
Neutral and reduced Roussin's red salt ester [Fe(2)(mu-RS)(2)(NO)(4)] (R = n-Pr, t-Bu, 6-methyl-2-pyridyl and 4,6-dimethyl-2-pyrimidyl): synthesis, X-ray crystal structures, spectroscopic, electrochemical and density functional theoretical investigations.
  Dalton Trans, (), 777-786.  
18316370 I.Gusarov, M.Starodubtseva, Z.Q.Wang, L.McQuade, S.J.Lippard, D.J.Stuehr, and E.Nudler (2008).
Bacterial nitric-oxide synthases operate without a dedicated redox partner.
  J Biol Chem, 283, 13140-13147.  
17356871 D.P.Linder, and K.R.Rodgers (2007).
Computational modeling of factors that modulate the unique FeNO bonding in {FeNO}(6) heme-thiolate model complexes.
  J Biol Inorg Chem, 12, 721-731.  
17537725 F.J.Chartier, and M.Couture (2007).
Substrate-specific interactions with the heme-bound oxygen molecule of nitric-oxide synthase.
  J Biol Chem, 282, 20877-20886.  
16804678 H.Li, J.Igarashi, J.Jamal, W.Yang, and T.L.Poulos (2006).
Structural studies of constitutive nitric oxide synthases with diatomic ligands bound.
  J Biol Inorg Chem, 11, 753-768.
PDB codes: 2g6h 2g6i 2g6j 2g6k 2g6l 2g6m 2g6n 2g6o
16767265 N.Xu, D.R.Powell, L.Cheng, and G.B.Richter-Addo (2006).
The first structurally characterized nitrosyl heme thiolate model complex.
  Chem Commun (Camb), (), 2030-2032.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer