spacer
spacer

PDBsum entry 1xw3

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
1xw3

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
110 a.a. *
Ligands
PO4
MPD
Waters ×104
* Residue conservation analysis
PDB id:
1xw3
Name: Oxidoreductase
Title: Crystal structure of human sulfiredoxin (srx)
Structure: Sulfiredoxin. Chain: a. Fragment: residues 32-137. Engineered: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.65Å     R-factor:   0.216     R-free:   0.258
Authors: M.S.Murray,T.J.Jonsson,L.C.Johnson,L.B.Poole,W.T.Lowther
Key ref:
T.J.Jönsson et al. (2005). Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin. Biochemistry, 44, 8634-8642. PubMed id: 15952770 DOI: 10.1021/bi050131i
Date:
29-Oct-04     Release date:   24-May-05    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q9BYN0  (SRXN1_HUMAN) -  Sulfiredoxin-1 from Homo sapiens
Seq:
Struc:
137 a.a.
110 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.8.98.2  - sulfiredoxin.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: S-hydroxy-S-oxy-L-cysteinyl-[peroxiredoxin] + [protein]-dithiol + ATP = S-hydroxy-L-cysteinyl-[peroxiredoxin] + [protein]-disulfide + ADP + phosphate
S-hydroxy-S-oxy-L-cysteinyl-[peroxiredoxin]
+ [protein]-dithiol
+ ATP
= S-hydroxy-L-cysteinyl-[peroxiredoxin]
+ [protein]-disulfide
+
ADP
Bound ligand (Het Group name = PO4)
corresponds exactly
+ phosphate
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi050131i Biochemistry 44:8634-8642 (2005)
PubMed id: 15952770  
 
 
Structural basis for the retroreduction of inactivated peroxiredoxins by human sulfiredoxin.
T.J.Jönsson, M.S.Murray, L.C.Johnson, L.B.Poole, W.T.Lowther.
 
  ABSTRACT  
 
Sufiredoxins (Srx) repair the inactivated forms of typical two-Cys peroxiredoxins (Prx) implicated in hydrogen peroxide-mediated cell signaling. The reduction of the cysteine sulfinic acid moiety within the active site of the Prx by Srx involves novel sulfur chemistry and the use of ATP and Mg(2+). The 1.65 A crystal structure of human Srx (hSrx) exhibits a new protein fold and a unique nucleotide binding motif containing the Gly98-Cys99-His100-Arg101 sequence at the N-terminus of an alpha-helix. HPLC analysis of the reaction products has confirmed that the site of ATP cleavage is between the beta- and gamma-phosphate groups. Cys99 and the gamma-phosphate of ATP, modeled within the active site of the 2.0 A ADP product complex structure, are adjacent to large surface depressions containing additional conserved residues. These features and the necessity for significant remodeling of the Prx structure suggest that the interactions between hSrx and typical two-Cys Prxs are specific. Moreover, the concave shape of the hSrx active site surface appears to be ideally suited to interacting with the convex surface of the toroidal Prx decamer.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
20176891 I.Iglesias-Baena, S.Barranco-Medina, A.Lázaro-Payo, F.J.López-Jaramillo, F.Sevilla, and J.J.Lázaro (2010).
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
  J Exp Bot, 61, 1509-1521.  
19113821 H.A.Woo, S.H.Bae, S.Park, and S.G.Rhee (2009).
Sestrin 2 is not a reductase for cysteine sulfinic acid of peroxiredoxins.
  Antioxid Redox Signal, 11, 739-745.  
19124468 J.Blackinton, M.Lakshminarasimhan, K.J.Thomas, R.Ahmad, E.Greggio, A.S.Raza, M.R.Cookson, and M.A.Wilson (2009).
Formation of a Stabilized Cysteine Sulfinic Acid Is Critical for the Mitochondrial Function of the Parkinsonism Protein DJ-1.
  J Biol Chem, 284, 6476-6485.
PDB codes: 3ezg 3f71
19812042 T.J.Jönsson, L.C.Johnson, and W.T.Lowther (2009).
Protein engineering of the quaternary sulfiredoxin.peroxiredoxin enzyme.substrate complex reveals the molecular basis for cysteine sulfinic acid phosphorylation.
  J Biol Chem, 284, 33305-33310.
PDB code: 3hy2
18454177 K.Lei, D.M.Townsend, and K.D.Tew (2008).
Protein cysteine sulfinic acid reductase (sulfiredoxin) as a regulator of cell proliferation and drug response.
  Oncogene, 27, 4877-4887.  
18279387 M.Aran, D.Caporaletti, A.M.Senn, M.T.Tellez de Iñon, M.R.Girotti, A.S.Llera, and R.A.Wolosiuk (2008).
ATP-dependent modulation and autophosphorylation of rapeseed 2-Cys peroxiredoxin.
  FEBS J, 275, 1450-1463.  
18593714 T.J.Jönsson, A.W.Tsang, W.T.Lowther, and C.M.Furdui (2008).
Identification of intact protein thiosulfinate intermediate in the reduction of cysteine sulfinic Acid in peroxiredoxin by human sulfiredoxin.
  J Biol Chem, 283, 22890-22894.  
18172504 T.J.Jönsson, L.C.Johnson, and W.T.Lowther (2008).
Structure of the sulphiredoxin-peroxiredoxin complex reveals an essential repair embrace.
  Nature, 451, 98.
PDB code: 2rii
18579529 T.J.Jönsson, M.S.Murray, L.C.Johnson, and W.T.Lowther (2008).
Reduction of Cysteine Sulfinic Acid in Peroxiredoxin by Sulfiredoxin Proceeds Directly through a Sulfinic Phosphoryl Ester Intermediate.
  J Biol Chem, 283, 23846-23851.
PDB code: 3cyi
17217469 P.Rey, N.Bécuwe, M.B.Barrault, D.Rumeau, M.Havaux, B.Biteau, and M.B.Toledano (2007).
The Arabidopsis thaliana sulfiredoxin is a plastidic cysteine-sulfinic acid reductase involved in the photooxidative stress response.
  Plant J, 49, 505-514.  
17653208 S.G.Rhee, W.Jeong, T.S.Chang, and H.A.Woo (2007).
Sulfiredoxin, the cysteine sulfinic acid reductase specific to 2-Cys peroxiredoxin: its discovery, mechanism of action, and biological significance.
  Kidney Int Suppl, (), S3-S8.  
  18084892 T.J.Jönsson, and W.T.Lowther (2007).
The peroxiredoxin repair proteins.
  Subcell Biochem, 44, 115-141.  
17081111 C.Jacob, I.Knight, and P.G.Winyard (2006).
Aspects of the biological redox chemistry of cysteine: from simple redox responses to sophisticated signalling pathways.
  Biol Chem, 387, 1385-1397.  
16926157 N.Brot, J.F.Collet, L.C.Johnson, T.J.Jönsson, H.Weissbach, and W.T.Lowther (2006).
The thioredoxin domain of Neisseria gonorrhoeae PilB can use electrons from DsbD to reduce downstream methionine sulfoxide reductases.
  J Biol Chem, 281, 32668-32675.
PDB code: 2h30
17034341 P.Maher (2006).
Redox control of neural function: background, mechanisms, and significance.
  Antioxid Redox Signal, 8, 1941-1970.  
17145963 T.J.Phalen, K.Weirather, P.B.Deming, V.Anathy, A.K.Howe, A.van der Vliet, T.J.Jönsson, L.B.Poole, and N.H.Heintz (2006).
Oxidation state governs structural transitions in peroxiredoxin II that correlate with cell cycle arrest and recovery.
  J Cell Biol, 175, 779-789.  
16565085 W.Jeong, S.J.Park, T.S.Chang, D.Y.Lee, and S.G.Rhee (2006).
Molecular mechanism of the reduction of cysteine sulfinic acid of peroxiredoxin to cysteine by mammalian sulfiredoxin.
  J Biol Chem, 281, 14400-14407.  
16541127 X.P.Liu, X.Y.Liu, J.Zhang, Z.L.Xia, X.Liu, H.J.Qin, and D.W.Wang (2006).
Molecular and functional characterization of sulfiredoxin homologs from higher plants.
  Cell Res, 16, 287-296.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer