spacer
spacer

PDBsum entry 1xgo

Go to PDB code: 
protein links
Aminopeptidase PDB id
1xgo

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
295 a.a. *
* Residue conservation analysis
PDB id:
1xgo
Name: Aminopeptidase
Title: Methionine aminopeptidase from hyperthermophile pyrococcus furiosus
Structure: Methionine aminopeptidase. Chain: a. Other_details: two cobalt ions in active site removed by the reduction of ph to 2.6
Source: Pyrococcus furiosus. Organism_taxid: 2261
Resolution:
3.50Å     R-factor:   0.182     R-free:   0.274
Authors: T.H.Tahirov,T.Tsukihara
Key ref:
T.H.Tahirov et al. (1998). Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus. J Mol Biol, 284, 101-124. PubMed id: 9811545 DOI: 10.1006/jmbi.1998.2146
Date:
18-Nov-97     Release date:   25-Feb-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P56218  (MAP2_PYRFU) -  Methionine aminopeptidase from Pyrococcus furiosus (strain ATCC 43587 / DSM 3638 / JCM 8422 / Vc1)
Seq:
Struc:
295 a.a.
295 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.4.11.18  - methionyl aminopeptidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Release of N-terminal amino acids, preferentially methionine, from peptides and arylamides.
      Cofactor: Cobalt cation

 

 
DOI no: 10.1006/jmbi.1998.2146 J Mol Biol 284:101-124 (1998)
PubMed id: 9811545  
 
 
Crystal structure of methionine aminopeptidase from hyperthermophile, Pyrococcus furiosus.
T.H.Tahirov, H.Oki, T.Tsukihara, K.Ogasahara, K.Yutani, K.Ogata, Y.Izu, S.Tsunasawa, I.Kato.
 
  ABSTRACT  
 
The structure of methionine aminopeptidase from hyperthermophile Pyrococcus furiosus (PfMAP) with an optimal growth temperature of 100 degreesC was determined by the multiple isomorphous replacement method and refined in three different crystal forms, one monoclinic and two hexagonal, at resolutions of 2.8, 2.9, and 3.5 A. The resolution of the monoclinic crystal form was extended to 1.75 A by water-mediated transformation to a low-humidity form, and the obtained diffraction data used for high-resolution structure refinement. This is the first description of a eukaryotic type methionine aminopeptidase structure. The PfMAP molecule is composed of two domains, a catalytic domain and an insertion domain, connected via two antiparallel beta-strands. The catalytic domain, which possesses an internal 2-fold symmetry and contains two cobalt ions in the active site, resembles the structure of a prokaryotic type MAP from Escherichia coli (EcMAP), while the structure of the insertion domain containing three helices has a novel fold and accounts for a major difference between the eukaryotic and prokaryotic types of methionine aminopeptidase. Analysis of the PfMAP structure in comparison with EcMAP and other mesophile proteins reveals several factors which may contribute to the hyperthermostability of PfMAP: (1) a significantly high number of hydrogen bonds and ion-pairs between side-chains of oppositely charged residues involved in the stabilization of helices; (2) an increased number of hydrogen bonds between the positively charged side-chain and neutral oxygen; (3) a larger number of buried water molecules involved in crosslinking the backbone atoms of sequentially separate segments; (4) stabilization of two antiparallel beta-strands connecting the two domains of the molecule by proline residues; (5) shortening of N and C-terminal tails and stabilization of the loop c3E by deletion of three residues.
 
  Selected figure(s)  
 
Figure 2.
Figure 2. The arrangement of proline residues Pro201, Pro202, and Pro266 in strands c2 and c3. Hydrogen bonds are shown by broken lines.
Figure 6.
Figure 6. Ion-pairs (a) in PfMAP, molecule lhf-A1, and (b) EcMAP. The a-carbon traces are shown by thin continuous lines, and the side-chains of charged residues forming the ion-pairs are shown by continuous bold lines. The interactions between the oppositely charged atoms with distance cutoff of 4 Å (broken lines).
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (1998, 284, 101-124) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19415262 R.Besio, S.Alleva, A.Forlino, A.Lupi, C.Meneghini, V.Minicozzi, A.Profumo, F.Stellato, R.Tenni, and S.Morante (2010).
Identifying the structure of the active sites of human recombinant prolidase.
  Eur Biophys J, 39, 935-945.  
19660503 J.J.Alvarado, A.Nemkal, J.M.Sauder, M.Russell, D.E.Akiyoshi, W.Shi, S.C.Almo, and L.M.Weiss (2009).
Structure of a microsporidian methionine aminopeptidase type 2 complexed with fumagillin and TNP-470.
  Mol Biochem Parasitol, 168, 158-167.
PDB codes: 3fm3 3fmq 3fmr
  20130794 J.Jeyakanthan, K.Takada, M.Sawano, K.Ogasahara, H.Mizutani, N.Kunishima, S.Yokoyama, and K.Yutani (2009).
Crystal Structural and Functional Analysis of the Putative Dipeptidase from Pyrococcus horikoshii OT3.
  J Biophys, 2009, 434038.  
18952013 S.Mitra, B.Bennett, and R.C.Holz (2009).
Mutation of H63 and its catalytic affect on the methionine aminopeptidase from Escherichia coli.
  Biochim Biophys Acta, 1794, 137-143.  
19198897 S.Mitra, G.Sheppard, J.Wang, B.Bennett, and R.C.Holz (2009).
Analyzing the binding of Co(II)-specific inhibitors to the methionyl aminopeptidases from Escherichia coli and Pyrococcus furiosus.
  J Biol Inorg Chem, 14, 573-585.  
18855426 S.J.Watterson, S.Mitra, S.I.Swierczek, B.Bennett, and R.C.Holz (2008).
Kinetic and spectroscopic analysis of the catalytic role of H79 in the methionine aminopeptidase from Escherichia coli.
  Biochemistry, 47, 11885-11893.  
19019076 S.Mitra, K.M.Job, L.Meng, B.Bennett, and R.C.Holz (2008).
Analyzing the catalytic role of Asp97 in the methionine aminopeptidase from Escherichia coli.
  FEBS J, 275, 6248-6259.  
18840883 V.M.Hernández-Rocamora, B.Maestro, A.Mollá-Morales, and J.M.Sanz (2008).
Rational stabilization of the C-LytA affinity tag by protein engineering.
  Protein Eng Des Sel, 21, 709-720.  
17510955 K.Takano, Y.Katagiri, A.Mukaiyama, H.Chon, H.Matsumura, Y.Koga, and S.Kanaya (2007).
Conformational contagion in a protein: structural properties of a chameleon sequence.
  Proteins, 68, 617-625.
PDB codes: 2df5 2dfe 2dff 2dfh 2dfi
17690690 T.P.Monie, A.J.Perrin, J.R.Birtley, T.R.Sweeney, I.Karakasiliotis, Y.Chaudhry, L.O.Roberts, S.Matthews, I.G.Goodfellow, and S.Curry (2007).
Structural insights into the transcriptional and translational roles of Ebp1.
  EMBO J, 26, 3936-3944.
PDB code: 2v6c
17492665 Y.Tanaka, T.Sasaki, I.Kumagai, Y.Yasutake, M.Yao, I.Tanaka, and K.Tsumoto (2007).
Molecular properties of two proteins homologous to PduO-type ATP:cob(I)alamin adenosyltransferase from Sulfolobus tokodaii.
  Proteins, 68, 446-457.
PDB code: 1wvt
16761197 H.S.Lee, Y.J.Kim, S.S.Bae, J.H.Jeon, J.K.Lim, B.C.Jeong, S.G.Kang, and J.H.Lee (2006).
Cloning, expression, and characterization of a methionyl aminopeptidase from a hyperthermophilic archaeon Thermococcus sp. NA1.
  Mar Biotechnol (NY), 8, 425-432.  
16438678 R.E.De Castro, J.A.Maupin-Furlow, M.I.Giménez, M.K.Herrera Seitz, and J.J.Sánchez (2006).
Haloarchaeal proteases and proteolytic systems.
  FEMS Microbiol Rev, 30, 17-35.  
16913833 T.Meinnel, A.Serero, and C.Giglione (2006).
Impact of the N-terminal amino acid on targeted protein degradation.
  Biol Chem, 387, 839-851.  
15811801 H.Atomi (2005).
Recent progress towards the application of hyperthermophiles and their enzymes.
  Curr Opin Chem Biol, 9, 166-173.  
15547949 J.A.Vetro, B.Dummitt, W.S.Micka, and Y.H.Chang (2005).
Evidence of a dominant negative mutant of yeast methionine aminopeptidase type 2 in Saccharomyces cerevisiae.
  J Cell Biochem, 94, 656-668.  
15578241 V.M.D'souza, R.S.Brown, B.Bennett, and R.C.Holz (2005).
Characterization of the active site and insight into the binding mode of the anti-angiogenesis agent fumagillin to the manganese(II)-loaded methionyl aminopeptidase from Escherichia coli.
  J Biol Inorg Chem, 10, 41-50.  
14976199 J.Y.Li, Y.M.Cui, L.L.Chen, M.Gu, J.Li, F.J.Nan, and Q.Z.Ye (2004).
Mutations at the S1 sites of methionine aminopeptidases from Escherichia coli and Homo sapiens reveal the residues critical for substrate specificity.
  J Biol Chem, 279, 21128-21134.  
14660583 V.P.Hytönen, T.K.Nyholm, O.T.Pentikäinen, J.Vaarno, E.J.Porkka, H.R.Nordlund, M.S.Johnson, J.P.Slotte, O.H.Laitinen, and M.S.Kulomaa (2004).
Chicken avidin-related protein 4/5 shows superior thermal stability when compared with avidin while retaining high affinity to biotin.
  J Biol Chem, 279, 9337-9343.  
15215523 Y.D.Liao, J.C.Jeng, C.F.Wang, S.C.Wang, and S.T.Chang (2004).
Removal of N-terminal methionine from recombinant proteins by engineered E. coli methionine aminopeptidase.
  Protein Sci, 13, 1802-1810.  
15206928 Y.Hioki, K.Ogasahara, S.J.Lee, J.Ma, M.Ishida, Y.Yamagata, Y.Matsuura, M.Ota, M.Ikeguchi, S.Kuramitsu, and K.Yutani (2004).
The crystal structure of the tryptophan synthase beta subunit from the hyperthermophile Pyrococcus furiosus. Investigation of stabilization factors.
  Eur J Biochem, 271, 2624-2635.
PDB code: 1v8z
15169774 Y.Tanaka, K.Tsumoto, Y.Yasutake, M.Umetsu, M.Yao, H.Fukada, I.Tanaka, and I.Kumagai (2004).
How oligomerization contributes to the thermostability of an archaeon protein. Protein L-isoaspartyl-O-methyltransferase from Sulfolobus tokodaii.
  J Biol Chem, 279, 32957-32967.
PDB code: 1vbf
12837806 S.Bartolucci, G.De Simone, S.Galdiero, R.Improta, V.Menchise, C.Pedone, E.Pedone, and M.Saviano (2003).
An integrated structural and computational study of the thermostability of two thioredoxin mutants from Alicyclobacillus acidocaldarius.
  J Bacteriol, 185, 4285-4289.
PDB codes: 1nsw 1nw2
12405829 B.Bennett, W.E.Antholine, V.M.D'souza, G.Chen, L.Ustinyuk, and R.C.Holz (2002).
Structurally distinct active sites in the copper(II)-substituted aminopeptidases from Aeromonas proteolytica and Escherichia coli.
  J Am Chem Soc, 124, 13025-13034.  
12136144 B.Padmanabhan, A.Paehler, and M.Horikoshi (2002).
Structure of creatine amidinohydrolase from Actinobacillus.
  Acta Crystallogr D Biol Crystallogr, 58, 1322-1328.
PDB code: 1kp0
12044150 L.Meng, S.Ruebush, V.M.D'souza, A.J.Copik, S.Tsunasawa, and R.C.Holz (2002).
Overexpression and divalent metal binding properties of the methionyl aminopeptidase from Pyrococcus furiosus.
  Biochemistry, 41, 7199-7208.  
11238984 C.Vieille, and G.J.Zeikus (2001).
Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability.
  Microbiol Mol Biol Rev, 65, 1.  
11389725 K.Ogasahara, N.N.Khechinashvili, M.Nakamura, T.Yoshimoto, and K.Yutani (2001).
Thermal stability of pyrrolidone carboxyl peptidases from the hyperthermophilic Archaeon, Pyrococcus furiosus.
  Eur J Biochem, 268, 3233-3242.  
10727764 B.Datta (2000).
MAPs and POEP of the roads from prokaryotic to eukaryotic kingdoms.
  Biochimie, 82, 95.  
10673442 C.Bompard-Gilles, V.Villeret, G.J.Davies, L.Fanuel, B.Joris, J.M.Frère, and J.Van Beeumen (2000).
A new variant of the Ntn hydrolase fold revealed by the crystal structure of L-aminopeptidase D-ala-esterase/amidase from Ochrobactrum anthropi.
  Structure, 8, 153-162.
PDB code: 1b65
11060042 C.Giglione, A.Serero, M.Pierre, B.Boisson, and T.Meinnel (2000).
Identification of eukaryotic peptide deformylases reveals universality of N-terminal protein processing mechanisms.
  EMBO J, 19, 5916-5929.  
  10950867 E.V.Pilipenko, T.V.Pestova, V.G.Kolupaeva, E.V.Khitrina, A.N.Poperechnaya, V.I.Agol, and C.U.Hellen (2000).
A cell cycle-dependent protein serves as a template-specific translation initiation factor.
  Genes Dev, 14, 2028-2045.  
10944393 H.Ponstingl, K.Henrick, and J.M.Thornton (2000).
Discriminating between homodimeric and monomeric proteins in the crystalline state.
  Proteins, 41, 47-57.  
10944350 J.Burke, A.Roujeinikova, P.J.Baker, S.Sedelnikova, C.Raasch, W.Liebl, and D.W.Rice (2000).
Crystallization and preliminary X-ray crystallographic studies on maltosyltransferase from Thermotoga maritima.
  Acta Crystallogr D Biol Crystallogr, 56, 1049-1050.  
11015217 K.Takano, K.Tsuchimori, Y.Yamagata, and K.Yutani (2000).
Contribution of salt bridges near the surface of a protein to the conformational stability.
  Biochemistry, 39, 12375-12381.
PDB codes: 1eq4 1eq5 1eqe
10704229 K.Yutani, G.Takayama, S.Goda, Y.Yamagata, S.Maki, K.Namba, S.Tsunasawa, and K.Ogasahara (2000).
The process of amyloid-like fibril formation by methionine aminopeptidase from a hyperthermophile, Pyrococcus furiosus.
  Biochemistry, 39, 2769-2777.  
10736182 V.M.D'souza, B.Bennett, A.J.Copik, and R.C.Holz (2000).
Divalent metal binding properties of the methionyl aminopeptidase from Escherichia coli.
  Biochemistry, 39, 3817-3826.  
10387007 W.T.Lowther, A.M.Orville, D.T.Madden, S.Lim, D.H.Rich, and B.W.Matthews (1999).
Escherichia coli methionine aminopeptidase: implications of crystallographic analyses of the native, mutant, and inhibited enzymes for the mechanism of catalysis.
  Biochemistry, 38, 7678-7688.
PDB codes: 2mat 3mat 4mat
9860869 K.Ogasahara, M.Nakamura, S.Nakura, S.Tsunasawa, I.Kato, T.Yoshimoto, and K.Yutani (1998).
The unusually slow unfolding rate causes the high stability of pyrrolidone carboxyl peptidase from a hyperthermophile, Pyrococcus furiosus: equilibrium and kinetic studies of guanidine hydrochloride-induced unfolding and refolding.
  Biochemistry, 37, 17537-17544.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer