spacer
spacer

PDBsum entry 1wpm

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Hydrolase PDB id
1wpm

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
307 a.a. *
Ligands
SO4 ×4
PG4 ×3
Waters ×538
* Residue conservation analysis
PDB id:
1wpm
Name: Hydrolase
Title: Structure of bacillus subtilis inorganic pyrophosphatase
Structure: Manganese-dependent inorganic pyrophosphatase. Chain: a, b. Synonym: pyrophosphate phospho-hydrolase, ppase. Engineered: yes
Source: Bacillus subtilis. Organism_taxid: 1423. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Biol. unit: Dimer (from PQS)
Resolution:
2.05Å     R-factor:   0.192     R-free:   0.248
Authors: I.P.Fabrichniy,L.Lehtio,A.Salminen,A.A.Baykov,R.Lahti,A.Goldman
Key ref:
I.P.Fabrichniy et al. (2004). Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion. Biochemistry, 43, 14403-14411. PubMed id: 15533045 DOI: 10.1021/bi0484973
Date:
09-Sep-04     Release date:   23-Nov-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P37487  (PPAC_BACSU) -  Manganese-dependent inorganic pyrophosphatase from Bacillus subtilis (strain 168)
Seq:
Struc:
309 a.a.
307 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.6.1.1  - inorganic diphosphatase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: diphosphate + H2O = 2 phosphate + H+
diphosphate
+ H2O
= 2 × phosphate
+ H(+)
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi0484973 Biochemistry 43:14403-14411 (2004)
PubMed id: 15533045  
 
 
Structural studies of metal ions in family II pyrophosphatases: the requirement for a Janus ion.
I.P.Fabrichniy, L.Lehtiö, A.Salminen, A.B.Zyryanov, A.A.Baykov, R.Lahti, A.Goldman.
 
  ABSTRACT  
 
Family II inorganic pyrophosphatases (PPases) constitute a new evolutionary group of PPases, with a different fold and mechanism than the common family I enzyme; they are related to the "DHH" family of phosphoesterases. Biochemical studies have shown that Mn(2+) and Co(2+) preferentially activate family II PPases; Mg(2+) partially activates; and Zn(2+) can either activate or inhibit (Zyryanov et al., Biochemistry, 43, 14395-14402, accompanying paper in this issue). The three solved family II PPase structures did not explain the differences between the PPase families nor the metal ion differences described above. We therefore solved three new family II PPase structures: Bacillus subtilis PPase (Bs-PPase) dimer core bound to Mn(2+) at 1.3 A resolution, and, at 2.05 A resolution, metal-free Bs-PPase and Streptococcus gordonii (Sg-PPase) containing sulfate and Zn(2+). Comparison of the new and old structures of various family II PPases demonstrates why the family II enzyme prefers Mn(2+) or Co(2+), as an activator rather than Mg(2+). Both M1 and M2 undergo significant changes upon substrate binding, changing from five-coordinate to octahedral geometry. Mn(2+) and Co(2+), which readily adopt different coordination states and geometries, are thus favored. Combining our structures with biochemical data, we identified M2 as the high-affinity metal site. Zn(2+) activates in the M1 site, where octahedral geometry is not essential for catalysis, but inhibits in the M2 site, because it is unable to assume octahedral geometry but remains trigonal bipyramidal. Finally, we propose that Lys205-Gln81-Gln80 form a hydrophilic channel to speed product release from the active site.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
  20944213 C.Bakolitsa, A.Kumar, D.McMullan, S.S.Krishna, M.D.Miller, D.Carlton, R.Najmanovich, P.Abdubek, T.Astakhova, H.J.Chiu, T.Clayton, M.C.Deller, L.Duan, Y.Elias, J.Feuerhelm, J.C.Grant, S.K.Grzechnik, G.W.Han, L.Jaroszewski, K.K.Jin, H.E.Klock, M.W.Knuth, P.Kozbial, D.Marciano, A.T.Morse, E.Nigoghossian, L.Okach, S.Oommachen, J.Paulsen, R.Reyes, C.L.Rife, C.V.Trout, H.van den Bedem, D.Weekes, A.White, Q.Xu, K.O.Hodgson, J.Wooley, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, and I.A.Wilson (2010).
The structure of the first representative of Pfam family PF06475 reveals a new fold with possible involvement in glycolipid metabolism.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 66, 1211-1217.
PDB code: 2h1t
19901023 F.Rao, R.Y.See, D.Zhang, D.C.Toh, Q.Ji, and Z.X.Liang (2010).
YybT is a signaling protein that contains a cyclic dinucleotide phosphodiesterase domain and a GGDEF domain with ATPase activity.
  J Biol Chem, 285, 473-482.  
18973826 D.R.Groebe (2009).
In search of negative allosteric modulators of biological targets.
  Drug Discov Today, 14, 41-49.  
17095506 I.P.Fabrichniy, L.Lehtiö, M.Tammenkoski, A.B.Zyryanov, E.Oksanen, A.A.Baykov, R.Lahti, and A.Goldman (2007).
A trimetal site and substrate distortion in a family II inorganic pyrophosphatase.
  J Biol Chem, 282, 1422-1431.
PDB codes: 2haw 2iw4
17505113 M.K.Rantanen, L.Lehtiö, L.Rajagopal, C.E.Rubens, and A.Goldman (2007).
Structure of the Streptococcus agalactiae family II inorganic pyrophosphatase at 2.80 A resolution.
  Acta Crystallogr D Biol Crystallogr, 63, 738-743.
PDB code: 2enx
17215253 M.Tammenkoski, V.M.Moiseev, M.Lahti, E.Ugochukwu, T.H.Brondijk, S.A.White, R.Lahti, and A.A.Baykov (2007).
Kinetic and mutational analyses of the major cytosolic exopolyphosphatase from Saccharomyces cerevisiae.
  J Biol Chem, 282, 9302-9311.  
  16946472 M.K.Rantanen, L.Lehtiö, L.Rajagopal, C.E.Rubens, and A.Goldman (2006).
Crystallization and preliminary crystallographic analysis of two Streptococcus agalactiae proteins: the family II inorganic pyrophosphatase and the serine/threonine phosphatase.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 891-894.  
16239227 M.Tammenkoski, S.Benini, N.N.Magretova, A.A.Baykov, and R.Lahti (2005).
An unusual, His-dependent family I pyrophosphatase from Mycobacterium tuberculosis.
  J Biol Chem, 280, 41819-41826.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer