spacer
spacer

PDBsum entry 1vsh

Go to PDB code: 
protein ligands metals links
Endonuclease PDB id
1vsh

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
146 a.a. *
Ligands
EPE
Metals
_ZN ×4
Waters ×131
* Residue conservation analysis
PDB id:
1vsh
Name: Endonuclease
Title: Asv integrase core domain with zn(ii) cofactors
Structure: Integrase. Chain: a. Fragment: catalytic core domain, residues 1 - 4, 52 - 209. Engineered: yes
Source: Rous sarcoma virus (strain schmidt-ruppin). Organism_taxid: 11889. Strain: schmidt-ruppin. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: original viral DNA clone: ju et al., J. Virol. 33:1026-1033 (1980), original expression clone terry et al., J. Virol. 62:2358-2365 (1988), expression clone for core: kulkosky et al., J. Virol. 206:448-456 (1995).
Biol. unit: Dimer (from PDB file)
Resolution:
1.95Å     R-factor:   0.173    
Authors: G.Bujacz,J.Alexandratos,A.Wlodawer
Key ref:
G.Bujacz et al. (1997). Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J Biol Chem, 272, 18161-18168. PubMed id: 9218451 DOI: 10.1074/jbc.272.29.18161
Date:
04-Mar-97     Release date:   15-May-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
O92956  (POL_RSVSB) -  Gag-Pol polyprotein from Rous sarcoma virus subgroup B (strain Schmidt-Ruppin)
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1603 a.a.
146 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class 2: E.C.2.7.7.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 3: E.C.2.7.7.49  - RNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 4: E.C.2.7.7.7  - DNA-directed Dna polymerase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: DNA(n) + a 2'-deoxyribonucleoside 5'-triphosphate = DNA(n+1) + diphosphate
DNA(n)
+ 2'-deoxyribonucleoside 5'-triphosphate
= DNA(n+1)
+ diphosphate
   Enzyme class 5: E.C.3.1.-.-
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
   Enzyme class 6: E.C.3.1.26.4  - ribonuclease H.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: Endonucleolytic cleavage to 5'-phosphomonoester.
   Enzyme class 7: E.C.3.4.23.-  - ?????
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1074/jbc.272.29.18161 J Biol Chem 272:18161-18168 (1997)
PubMed id: 9218451  
 
 
Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity.
G.Bujacz, J.Alexandratos, A.Wlodawer, G.Merkel, M.Andrake, R.A.Katz, A.M.Skalka.
 
  ABSTRACT  
 
Retroviral integrases (INs) contain two known metal binding domains. The N-terminal domain includes a zinc finger motif and has been shown to bind Zn2+, whereas the central catalytic core domain includes a triad of acidic amino acids that bind Mn2+ or Mg2+, the metal cofactors required for enzymatic activity. The integration reaction occurs in two distinct steps; the first is a specific endonucleolytic cleavage step called "processing," and the second is a polynucleotide transfer or "joining" step. Our previous results showed that the metal preference for in vitro activity of avian sarcoma virus IN is Mn2+ > Mg2+ and that a single cation of either metal is coordinated by two of the three critical active site residues (Asp-64 and Asp-121) in crystals of the isolated catalytic domain. Here, we report that Ca2+, Zn2+, and Cd2+ can also bind in the active site of the catalytic domain. Furthermore, two zinc and cadmium cations are bound at the active site, with all three residues of the active site triad (Asp-64, Asp-121, and Glu-157) contributing to their coordination. These results are consistent with a two-metal mechanism for catalysis by retroviral integrases. We also show that Zn2+ can serve as a cofactor for the endonucleolytic reactions catalyzed by either the full-length protein, a derivative lacking the N-terminal domain, or the isolated catalytic domain of avian sarcoma virus IN. However, polynucleotidyl transferase activities are severely impaired or undetectable in the presence of Zn2+. Thus, although the processing and joining steps of integrase employ a similar mechanism and the same active site triad, they can be clearly distinguished by their metal preferences.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. A stereo view of the active site of ASV IN in the presence of divalent cations. Shown are the superimposed coordinates of the side chains of Asp-64 (D64), Asp-121 (D121), and Glu-157^ (E157) as well as the divalent cations. The complexes presented^ here are with Mn2+ (yellow), Zn2+ (green), Cd^2+ (red), and Ca^2+ (blue).
Figure 6.
Fig. 6. The environment of Mg2+ and Zn2+ divalent cations in the active site of polynucleotidyltransferases. The residues forming the D,D(35)E motif in the active site of ASV IN (green) are compared^ with the equivalent sites of HIV-1 RNase H (blue) as well as of^ the exonuclease domain of the Klenow fragment of DNA I polymerase^ (pink). One of the water molecules present in site I of ASV IN is found in a position occupied by carboxylate oxygens (O) in the other two structures. D, Asp-; E, Glu-.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1997, 272, 18161-18168) copyright 1997.  
  Figures were selected by the author.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20096702 A.L.Perryman, S.Forli, G.M.Morris, C.Burt, Y.Cheng, M.J.Palmer, K.Whitby, J.A.McCammon, C.Phillips, and A.J.Olson (2010).
A dynamic model of HIV integrase inhibition and drug resistance.
  J Mol Biol, 397, 600-615.  
20118915 S.Hare, S.S.Gupta, E.Valkov, A.Engelman, and P.Cherepanov (2010).
Retroviral intasome assembly and inhibition of DNA strand transfer.
  Nature, 464, 232-236.
PDB codes: 3l2q 3l2r 3l2s 3l2t 3l2u 3l2v 3l2w 3oy9
19747122 C.Marchand, K.Maddali, M.Métifiot, and Y.Pommier (2009).
HIV-1 IN inhibitors: 2010 update and perspectives.
  Curr Top Med Chem, 9, 1016-1037.  
19490099 M.Jaskolski, J.N.Alexandratos, G.Bujacz, and A.Wlodawer (2009).
Piecing together the structure of retroviral integrase, an important target in AIDS therapy.
  FEBS J, 276, 2926-2946.  
19544345 M.L.Barreca, N.Iraci, L.De Luca, and A.Chimirri (2009).
Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors.
  ChemMedChem, 4, 1446-1456.  
19570857 S.P.Moore, and D.J.Garfinkel (2009).
Functional analysis of N-terminal residues of ty1 integrase.
  J Virol, 83, 9502-9511.  
18408159 S.V.Lipchock, and S.A.Strobel (2008).
A relaxed active site after exon ligation by the group I intron.
  Proc Natl Acad Sci U S A, 105, 5699-5704.
PDB codes: 3bo2 3bo3 3bo4
  17374162 A.Savarino (2007).
In-Silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate.
  Retrovirology, 4, 21.  
17157316 G.Ren, K.Gao, F.D.Bushman, and M.Yeager (2007).
Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA.
  J Mol Biol, 366, 286-294.  
16511570 J.M.Richardson, A.Dawson, N.O'Hagan, P.Taylor, D.J.Finnegan, and M.D.Walkinshaw (2006).
Mechanism of Mos1 transposition: insights from structural analysis.
  EMBO J, 25, 1324-1334.
PDB code: 2f7t
  16790058 J.Ramcharan, D.M.Colleluori, G.Merkel, M.D.Andrake, and A.M.Skalka (2006).
Mode of inhibition of HIV-1 Integrase by a C-terminal domain-specific monoclonal antibody.
  Retrovirology, 3, 34.  
16809294 S.Kehlenbeck, U.Betz, A.Birkmann, B.Fast, A.H.Göller, K.Henninger, T.Lowinger, D.Marrero, A.Paessens, D.Paulsen, V.Pevzner, R.Schohe-Loop, H.Tsujishita, R.Welker, J.Kreuter, H.Rübsamen-Waigmann, and F.Dittmer (2006).
Dihydroxythiophenes are novel potent inhibitors of human immunodeficiency virus integrase with a diketo acid-like pharmacophore.
  J Virol, 80, 6883-6894.  
17085478 T.L.Diamond, and F.D.Bushman (2006).
Role of metal ions in catalysis by HIV integrase analyzed using a quantitative PCR disintegration assay.
  Nucleic Acids Res, 34, 6116-6125.  
15800637 F.V.Rivas, N.H.Tolia, J.J.Song, J.P.Aragon, J.Liu, G.J.Hannon, and L.Joshua-Tor (2005).
Purified Argonaute2 and an siRNA form recombinant human RISC.
  Nat Struct Mol Biol, 12, 340-349.
PDB codes: 1z25 1z26
16304149 J.Didierjean, C.Isel, F.Querré, J.F.Mouscadet, A.M.Aubertin, J.Y.Valnot, S.R.Piettre, and R.Marquet (2005).
Inhibition of human immunodeficiency virus type 1 reverse transcriptase, RNase H, and integrase activities by hydroxytropolones.
  Antimicrob Agents Chemother, 49, 4884-4894.  
15634344 J.Snásel, Z.Krejcík, V.Jencová, I.Rosenberg, T.Ruml, J.Alexandratos, A.Gustchina, and I.Pichová (2005).
Integrase of Mason-Pfizer monkey virus.
  FEBS J, 272, 203-216.  
15729361 Y.Pommier, A.A.Johnson, and C.Marchand (2005).
Integrase inhibitors to treat HIV/AIDS.
  Nat Rev Drug Discov, 4, 236-248.  
15194746 K.Gao, S.Wong, and F.Bushman (2004).
Metal binding by the D,DX35E motif of human immunodeficiency virus type 1 integrase: selective rescue of Cys substitutions by Mn2+ in vitro.
  J Virol, 78, 6715-6722.  
16075307 R.G.Karki, Y.Tang, T.R.Burke, and M.C.Nicklaus (2004).
Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design.
  J Comput Aided Mol Des, 18, 739-760.  
12610159 A.L.Harper, M.Sudol, and M.Katzman (2003).
An amino acid in the central catalytic domain of three retroviral integrases that affects target site selection in nonviral DNA.
  J Virol, 77, 3838-3845.  
14682279 M.J.Curcio, and K.M.Derbyshire (2003).
The outs and ins of transposition: from mu to kangaroo.
  Nat Rev Mol Cell Biol, 4, 865-877.  
12609852 M.L.Barreca, K.W.Lee, A.Chimirri, and J.M.Briggs (2003).
Molecular dynamics studies of the wild-type and double mutant HIV-1 integrase complexed with the 5CITEP inhibitor: mechanism for inhibition and drug resistance.
  Biophys J, 84, 1450-1463.  
11997448 J.A.Grobler, K.Stillmock, B.Hu, M.Witmer, P.Felock, A.S.Espeseth, A.Wolfe, M.Egbertson, M.Bourgeois, J.Melamed, J.S.Wai, S.Young, J.Vacca, and D.J.Hazuda (2002).
Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes.
  Proc Natl Acad Sci U S A, 99, 6661-6666.  
11896402 S.Lovell, I.Y.Goryshin, W.R.Reznikoff, and I.Rayment (2002).
Two-metal active site binding of a Tn5 transposase synaptic complex.
  Nat Struct Biol, 9, 278-281.
PDB codes: 1l1a 1mur 4dm0
11462051 A.L.Harper, L.M.Skinner, M.Sudol, and M.Katzman (2001).
Use of patient-derived human immunodeficiency virus type 1 integrases to identify a protein residue that affects target site selection.
  J Virol, 75, 7756-7762.  
11557805 A.Pingoud, and A.Jeltsch (2001).
Structure and function of type II restriction endonucleases.
  Nucleic Acids Res, 29, 3705-3727.  
10911996 A.B.Hickman, Y.Li, S.V.Mathew, E.W.May, N.L.Craig, and F.Dyda (2000).
Unexpected structural diversity in DNA recombination: the restriction endonuclease connection.
  Mol Cell, 5, 1025-1034.
PDB code: 1f1z
11169922 J.Yi, and A.M.Skalka (2000).
Mapping epitopes of monoclonal antibodies against HIV-1 integrase with limited proteolysis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.
  Biopolymers, 55, 308-318.  
10685051 R.D.Lins, T.P.Straatsma, and J.M.Briggs (2000).
Similarities in the HIV-1 and ASV integrase active sites upon metal cofactor binding.
  Biopolymers, 53, 308-315.  
10387092 J.Yi, E.Asante-Appiah, and A.M.Skalka (1999).
Divalent cations stimulate preferential recognition of a viral DNA end by HIV-1 integrase.
  Biochemistry, 38, 8458-8468.  
10547692 L.Haren, B.Ton-Hoang, and M.Chandler (1999).
Integrating DNA: transposases and retroviral integrases.
  Annu Rev Microbiol, 53, 245-281.  
9560188 J.Lubkowski, F.Yang, J.Alexandratos, A.Wlodawer, H.Zhao, T.R.Burke, N.Neamati, Y.Pommier, G.Merkel, and A.M.Skalka (1998).
Structure of the catalytic domain of avian sarcoma virus integrase with a bound HIV-1 integrase-targeted inhibitor.
  Proc Natl Acad Sci U S A, 95, 4831-4836.
PDB codes: 1a5v 1a5w 1a5x
9649447 S.Y.Namgoong, and R.M.Harshey (1998).
The same two monomers within a MuA tetramer provide the DDE domains for the strand cleavage and strand transfer steps of transposition.
  EMBO J, 17, 3775-3785.  
9689049 Y.Goldgur, F.Dyda, A.B.Hickman, T.M.Jenkins, R.Craigie, and D.R.Davies (1998).
Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium.
  Proc Natl Acad Sci U S A, 95, 9150-9154.
PDB codes: 1bis 1biu 1biz
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer