spacer
spacer

PDBsum entry 1q1h

Go to PDB code: 
protein links
Transcription PDB id
1q1h

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
85 a.a. *
* Residue conservation analysis
PDB id:
1q1h
Name: Transcription
Title: An extended winged helix domain in general transcription factor e/iie alpha
Structure: Transcription factor e. Chain: a. Fragment: residue 1-110. Synonym: tfe. Tfiie alpha subunit homolog. Tfe. Engineered: yes
Source: Sulfolobus solfataricus. Organism_taxid: 2287. Gene: tfe. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
2.90Å     R-factor:   0.315     R-free:   0.321
Authors: A.Meinhart,J.Blobel,P.Cramer
Key ref:
A.Meinhart et al. (2003). An extended winged helix domain in general transcription factor E/IIE alpha. J Biol Chem, 278, 48267-48274. PubMed id: 13679366 DOI: 10.1074/jbc.M307874200
Date:
21-Jul-03     Release date:   09-Dec-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
Q980M5  (TFE_SULSO) -  Transcription factor E from Saccharolobus solfataricus (strain ATCC 35092 / DSM 1617 / JCM 11322 / P2)
Seq:
Struc:
178 a.a.
85 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1074/jbc.M307874200 J Biol Chem 278:48267-48274 (2003)
PubMed id: 13679366  
 
 
An extended winged helix domain in general transcription factor E/IIE alpha.
A.Meinhart, J.Blobel, P.Cramer.
 
  ABSTRACT  
 
Initiation of eukaryotic mRNA transcription requires melting of promoter DNA with the help of the general transcription factors TFIIE and TFIIH. Here we define a conserved and functionally essential N-terminal domain in TFE, the archaeal homolog of the large TFIIE subunit alpha. X-ray crystallography shows that this TFE domain adopts a winged helix-turn-helix (winged helix) fold, extended by specific alpha-helices at the N and C termini. Although the winged helix fold is often found in DNA-binding proteins, we show that TFE is not a typical DNA-binding winged helix protein, because its putative DNA-binding face shows a negatively charged groove and an unusually long wing, and because the domain lacks DNA-binding activity in vitro. The groove and a conserved hydrophobic surface patch on the additional N-terminal alpha-helix may, however, allow for interactions with other general transcription factors and RNA polymerase. Homology modeling shows that the TFE domain is conserved in TFIIE alpha, including the potential functional surfaces.
 
  Selected figure(s)  
 
Figure 1.
FIG. 1. Experimental electron density maps. Depicted are three regions of the initial experimental electron density map obtained by MAD phasing (blue, contoured at 1 ) with the final model superimposed (yellow). The location of methionine side chains coincides with peaks in a selenium anomalous difference Fourier map (red, contoured at 4 ). The selenium anomalous difference Fourier was calculated with anomalous differences measured at the selenium peak wavelength and with phases from the final model.
Figure 3.
FIG. 3. Comparison with other winged helix domains. A gallery of winged helix domains in the general transcription factors TFIIE and TFIIF and a canonical DNA-binding winged helix domain. At the top, a ribbon representation is shown. The winged helix domains are in gray, with specific features in red. The domain of TFIIF Rap74 is shown with the interacting Fcp1 helical peptide (green cylinder). E2F-4 is shown with bound DNA (yellow). At the bottom, the molecular surface potential is shown colored according to Fig. 2E. From left to right: TFE/TFIIE (this study), TFIIE (PDB code 1D8K [PDB] (37)), TFIIF Rap74 (PDB code 1J2X [PDB] (20)), TFIIF Rap30 (PDB code 1BBY [PDB] (22)), and E2F-4 (PDB code 1D8K [PDB] (61)). The view is as in Fig. 2C, top.
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (2003, 278, 48267-48274) copyright 2003.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
22751016 S.Grünberg, L.Warfield, and S.Hahn (2012).
Architecture of the RNA polymerase II preinitiation complex and mechanism of ATP-dependent promoter opening.
  Nat Struct Mol Biol, 19, 788-796.  
21082705 J.Lin, T.Zhou, and J.Wang (2011).
Solution structure of the human HSPC280 protein.
  Protein Sci, 20, 216-223.
PDB code: 2l2o
21358628 S.Lefèvre, H.Dumay-Odelot, L.El-Ayoubi, A.Budd, P.Legrand, N.Pinaud, M.Teichmann, and S.Fribourg (2011).
Structure-function analysis of hRPC62 provides insights into RNA polymerase III transcription initiation.
  Nat Struct Mol Biol, 18, 352-358.
PDB codes: 2xub 2xv4
20363950 J.Iqbal, and S.A.Qureshi (2010).
Selective depletion of Sulfolobus solfataricus transcription factor E under heat shock conditions.
  J Bacteriol, 192, 2887-2891.  
20026480 R.Carter, and G.Drouin (2010).
The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors.
  Mol Biol Evol, 27, 1035-1043.  
20040576 S.Grünberg, C.Reich, M.E.Zeller, M.S.Bartlett, and M.Thomm (2010).
Rearrangement of the RNA polymerase subunit H and the lower jaw in archaeal elongation complexes.
  Nucleic Acids Res, 38, 1950-1963.  
20797630 S.R.Geiger, K.Lorenzen, A.Schreieck, P.Hanecker, D.Kostrewa, A.J.Heck, and P.Cramer (2010).
RNA polymerase I contains a TFIIF-related DNA-binding subcomplex.
  Mol Cell, 39, 583-594.
PDB codes: 3nff 3nfg 3nfh 3nfi
19210545 A.Tanaka, T.Watanabe, Y.Iida, F.Hanaoka, and Y.Ohkuma (2009).
Central forkhead domain of human TFIIE beta plays a primary role in binding double-stranded DNA at transcription initiation.
  Genes Cells, 14, 395-405.  
19057509 T.Koschubs, M.Seizl, L.Larivière, F.Kurth, S.Baumli, D.E.Martin, and P.Cramer (2009).
Identification, structure, and functional requirement of the Mediator submodule Med7N/31.
  EMBO J, 28, 69-80.
PDB codes: 3fbi 3fbn
19419240 Y.Korkhin, U.M.Unligil, O.Littlefield, P.J.Nelson, D.I.Stuart, P.B.Sigler, S.D.Bell, and N.G.Abrescia (2009).
Evolution of Complex RNA Polymerases: The Complete Archaeal RNA Polymerase Structure.
  PLoS Biol, 7, e102.
PDB codes: 2waq 2wb1
18160037 C.D.Kuhn, S.R.Geiger, S.Baumli, M.Gartmann, J.Gerber, S.Jennebach, T.Mielke, H.Tschochner, R.Beckmann, and P.Cramer (2007).
Functional architecture of RNA polymerase I.
  Cell, 131, 1260-1272.
PDB code: 2rf4
17697097 F.Werner (2007).
Structure and function of archaeal RNA polymerases.
  Mol Microbiol, 65, 1395-1404.  
16818233 A.J.Jasiak, K.J.Armache, B.Martens, R.P.Jansen, and P.Cramer (2006).
Structural biology of RNA polymerase III: subcomplex C17/25 X-ray structure and 11 subunit enzyme model.
  Mol Cell, 23, 71-81.
PDB code: 2ckz
16547462 A.Jawhari, M.Uhring, S.De Carlo, C.Crucifix, G.Tocchini-Valentini, D.Moras, P.Schultz, and A.Poterszman (2006).
Structure and oligomeric state of human transcription factor TFIIE.
  EMBO Rep, 7, 500-505.  
16819517 G.Miller, and S.Hahn (2006).
A DNA-tethered cleavage probe reveals the path for promoter DNA in the yeast preinitiation complex.
  Nat Struct Mol Biol, 13, 603-610.  
16964259 L.Larivière, S.Geiger, S.Hoeppner, S.Röther, K.Strässer, and P.Cramer (2006).
Structure and TBP binding of the Mediator head subcomplex Med8-Med18-Med20.
  Nat Struct Mol Biol, 13, 895-901.
PDB codes: 2hzm 2hzs
15916593 E.P.Geiduschek, and M.Ouhammouch (2005).
Archaeal transcription and its regulators.
  Mol Microbiol, 56, 1397-1407.  
16042788 I.Callebaut, K.Prat, E.Meurice, J.P.Mornon, and S.Tomavo (2005).
Prediction of the general transcription factors associated with RNA polymerase II in Plasmodium falciparum: conserved features and differences relative to other eukaryotes.
  BMC Genomics, 6, 100.  
15743411 K.Hayashi, T.Watanabe, A.Tanaka, T.Furumoto, C.Sato-Tsuchiya, M.Kimura, M.Yokoi, A.Ishihama, F.Hanaoka, and Y.Ohkuma (2005).
Studies of Schizosaccharomyces pombe TFIIE indicate conformational and functional changes in RNA polymerase II at transcription initiation.
  Genes Cells, 10, 207-224.  
15808743 L.Aravind, V.Anantharaman, S.Balaji, M.M.Babu, and L.M.Iyer (2005).
The many faces of the helix-turn-helix domain: transcription regulation and beyond.
  FEMS Microbiol Rev, 29, 231-262.  
15831786 M.Pellegrini-Calace, and J.M.Thornton (2005).
Detecting DNA-binding helix-turn-helix structural motifs using sequence and structure information.
  Nucleic Acids Res, 33, 2129-2140.  
15610738 H.Kettenberger, K.J.Armache, and P.Cramer (2004).
Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS.
  Mol Cell, 16, 955-965.
PDB codes: 1y1v 1y1w 1y1y 1y77
15196459 M.Ouhammouch (2004).
Transcriptional regulation in Archaea.
  Curr Opin Genet Dev, 14, 133-138.  
15196470 P.Cramer (2004).
RNA polymerase II structure: from core to functional complexes.
  Curr Opin Genet Dev, 14, 218-226.  
15704013 W.A.McLaughlin, D.W.Kulp, J.de la Cruz, X.J.Lu, C.L.Lawson, and H.M.Berman (2004).
A structure-based method for identifying DNA-binding proteins and their sites of DNA-interaction.
  J Struct Funct Genomics, 5, 255-265.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer