spacer
spacer

PDBsum entry 1oby

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Cell adhesion PDB id
1oby

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
75 a.a. *
Ligands
ASN-GLU-PHE-TYR-
ALA
THR-ASN-GLU-PHE-
TYR-ALA
SO4 ×3
Waters ×145
* Residue conservation analysis
PDB id:
1oby
Name: Cell adhesion
Title: Crystal structure of the complex of pdz2 of syntenin with a syndecan-4 peptide.
Structure: Syntenin 1. Chain: a, b. Fragment: pdz2, residues 197-270. Synonym: syndecan binding protein 1, melanoma differentiation associated protein-9, mda-9, scaffold protein pbp1, tacip18, pro-tgf- alpha cytoplasmic domain-interacting protein 18. Engineered: yes. Syndecan-4. Chain: p, q.
Source: Homo sapiens. Human. Organism_taxid: 9606. Atcc: 72537. Expressed in: escherichia coli. Expression_system_taxid: 511693. Synthetic: yes. Organism_taxid: 9606
Biol. unit: Tetramer (from PDB file)
Resolution:
1.85Å     R-factor:   0.175     R-free:   0.226
Authors: B.S.Kang,D.R.Cooper,Y.Devedjiev,U.Derewenda,Z.S.Derewenda
Key ref:
B.S.Kang et al. (2003). Molecular roots of degenerate specificity in syntenin's PDZ2 domain: reassessment of the PDZ recognition paradigm. Structure, 11, 845-853. PubMed id: 12842047 DOI: 10.1016/S0969-2126(03)00125-4
Date:
31-Jan-03     Release date:   11-Jul-03    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
O00560  (SDCB1_HUMAN) -  Syntenin-1 from Homo sapiens
Seq:
Struc:
298 a.a.
75 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 

 
DOI no: 10.1016/S0969-2126(03)00125-4 Structure 11:845-853 (2003)
PubMed id: 12842047  
 
 
Molecular roots of degenerate specificity in syntenin's PDZ2 domain: reassessment of the PDZ recognition paradigm.
B.S.Kang, D.R.Cooper, Y.Devedjiev, U.Derewenda, Z.S.Derewenda.
 
  ABSTRACT  
 
Crystal structures of the PDZ2 domain of the scaffolding protein syntenin, both unbound and in complexes with peptides derived from C termini of IL5 receptor (alpha chain) and syndecan, reveal the molecular roots of syntenin's degenerate specificity. Three distinct binding sites (S(0), S(-1), and S(-2)), with affinities for hydrophobic side chains, function in a combinatorial way: S(-1) and S(-2) act together to bind syndecan, while S(0) and S(-1) are involved in the binding of IL5Ralpha. Neither mode of interaction is consistent with the prior classification scheme, which defined the IL5Ralpha interaction as class I (-S/T-X-phi) and the syndecan interaction as class II (-phi-X-phi). These results, in conjunction with other emerging structural data on PDZ domains, call for a revision of their classification and of the existing model of their mechanism.
 
  Selected figure(s)  
 
Figure 3.
Figure 3. Schematics of PDZ Interactions(A) Canonical PDZ binding of C-terminal sequence depends on the residues P[0] and P[ -2] binding pockets S[0] and S[ -2].(B) All three C-terminal residues are involved in the interaction to PDZ binding groove.(C) The C-terminal binding depends on the binding at S[ -1] and S[ -2] of PDZ as seen in PDZ2-syndecan-4 peptide complex.(D) The C-terminal binding depends on the binding at S[0] and S[ -1] as seen in syntenin PDZ2-interleukin 5 receptor a subunit peptide complex.(E) Syntrophin PDZ interaction by the residues from b-finger conformation of nNOS.(F) Interaction of internal residue at pocket S[ -2] while C-terminal residues binds at S[0] as seen in syntenin PDZ2-PDZ2 interaction.
 
  The above figure is reprinted by permission from Cell Press: Structure (2003, 11, 845-853) copyright 2003.  
  Figure was selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21376703 J.H.Lee, H.Park, S.J.Park, H.J.Kim, and S.H.Eom (2011).
The structural flexibility of the shank1 PDZ domain is important for its binding to different ligands.
  Biochem Biophys Res Commun, 407, 207-212.
PDB codes: 3qjm 3qjn
20461427 K.Kaufmann, N.Shen, L.Mizoue, and J.Meiler (2011).
A physical model for PDZ-domain/peptide interactions.
  J Mol Model, 17, 315-324.  
20842623 S.Fournane, S.Charbonnier, A.Chapelle, B.Kieffer, G.Orfanoudakis, G.Travé, M.Masson, and Y.Nominé (2011).
Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1.
  J Mol Recognit, 24, 511-523.  
20509869 H.J.Lee, and J.J.Zheng (2010).
PDZ domains and their binding partners: structure, specificity, and modification.
  Cell Commun Signal, 8, 8.  
20047332 R.C.Tyler, F.C.Peterson, and B.F.Volkman (2010).
Distal interactions within the par3-VE-cadherin complex.
  Biochemistry, 49, 951-957.
PDB code: 2koh
20591147 S.Kalyoncu, O.Keskin, and A.Gursoy (2010).
Interaction prediction and classification of PDZ domains.
  BMC Bioinformatics, 11, 357.  
19228696 B.Sulka, H.Lortat-Jacob, R.Terreux, F.Letourneur, and P.Rousselle (2009).
Tyrosine dephosphorylation of the syndecan-1 PDZ binding domain regulates syntenin-1 recruitment.
  J Biol Chem, 284, 10659-10671.  
19581411 D.Sengupta, S.Truschel, C.Bachert, and A.D.Linstedt (2009).
Organelle tethering by a homotypic PDZ interaction underlies formation of the Golgi membrane network.
  J Cell Biol, 186, 41-55.  
19585657 Z.N.Gerek, O.Keskin, and S.B.Ozkan (2009).
Identification of specificity and promiscuity of PDZ domain interactions through their dynamic behavior.
  Proteins, 77, 796-811.  
18411422 J.Liu, J.Zhang, Y.Yang, H.Huang, W.Shen, Q.Hu, X.Wang, J.Wu, and Y.Shi (2008).
Conformational change upon ligand binding and dynamics of the PDZ domain from leukemia-associated Rho guanine nucleotide exchange factor.
  Protein Sci, 17, 1003-1014.  
18764819 S.Maday, E.Anderson, H.C.Chang, J.Shorter, A.Satoh, J.Sfakianos, H.Fölsch, J.M.Anderson, Z.Walther, and I.Mellman (2008).
A PDZ-binding motif controls basolateral targeting of syndecan-1 along the biosynthetic pathway in polarized epithelial cells.
  Traffic, 9, 1915-1924.  
17928286 A.S.Fanning, M.F.Lye, J.M.Anderson, and A.Lavie (2007).
Domain swapping within PDZ2 is responsible for dimerization of ZO proteins.
  J Biol Chem, 282, 37710-37716.
PDB code: 2rcz
17279591 M.Paduch, M.Biernat, P.Stefanowicz, Z.S.Derewenda, Z.Szewczuk, and J.Otlewski (2007).
Bivalent peptides as models for multimeric targets of PDZ domains.
  Chembiochem, 8, 443-452.  
17962403 S.T.Runyon, Y.Zhang, B.A.Appleton, S.L.Sazinsky, P.Wu, B.Pan, C.Wiesmann, N.J.Skelton, and S.S.Sidhu (2007).
Structural and functional analysis of the PDZ domains of human HtrA1 and HtrA3.
  Protein Sci, 16, 2454-2471.
PDB codes: 2joa 2p3w
17656586 Y.Zhang, B.A.Appleton, P.Wu, C.Wiesmann, and S.S.Sidhu (2007).
Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain.
  Protein Sci, 16, 1738-1750.
PDB code: 2pzd
17002371 N.Basdevant, H.Weinstein, and M.Ceruso (2006).
Thermodynamic basis for promiscuity and selectivity in protein-protein interactions: PDZ domains, a case study.
  J Am Chem Soc, 128, 12766-12777.  
16908530 N.Latysheva, G.Muratov, S.Rajesh, M.Padgett, N.A.Hotchin, M.Overduin, and F.Berditchevski (2006).
Syntenin-1 is a new component of tetraspanin-enriched microdomains: mechanisms and consequences of the interaction of syntenin-1 with CD63.
  Mol Cell Biol, 26, 7707-7718.  
16737968 Y.Zhang, S.Yeh, B.A.Appleton, H.A.Held, P.J.Kausalya, D.C.Phua, W.L.Wong, L.A.Lasky, C.Wiesmann, W.Hunziker, and S.S.Sidhu (2006).
Convergent and divergent ligand specificity among PDZ domains of the LAP and zonula occludens (ZO) families.
  J Biol Chem, 281, 22299-22311.  
16132821 A.E.Duquesne, M.Ruijter, J.Brouwer, J.W.Drijfhout, S.B.Nabuurs, C.A.Spronk, G.W.Vuister, M.Ubbink, and G.W.Canters (2005).
Solution structure of the second PDZ domain of the neuronal adaptor X11alpha and its interaction with the C-terminal peptide of the human copper chaperone for superoxide dismutase.
  J Biomol NMR, 32, 209-218.
PDB code: 1y7n
15986090 J.Biber, S.M.Gisler, N.Hernando, and H.Murer (2005).
Protein/protein interactions (PDZ) in proximal tubules.
  J Membr Biol, 203, 111-118.  
16007100 J.F.Long, W.Feng, R.Wang, L.N.Chan, F.C.Ip, J.Xia, N.Y.Ip, and M.Zhang (2005).
Autoinhibition of X11/Mint scaffold proteins revealed by the closed conformation of the PDZ tandem.
  Nat Struct Mol Biol, 12, 722-728.
PDB codes: 1u37 1u38 1u39 1u3b
15774468 K.L.Madsen, T.Beuming, M.Y.Niv, C.W.Chang, K.K.Dev, H.Weinstein, and U.Gether (2005).
Molecular determinants for the complex binding specificity of the PDZ domain in PICK1.
  J Biol Chem, 280, 20539-20548.  
15978037 L.C.van den Berk, E.Landi, E.Harmsen, L.Dente, and W.J.Hendriks (2005).
Redox-regulated affinity of the third PDZ domain in the phosphotyrosine phosphatase PTP-BL for cysteine-containing target peptides.
  FEBS J, 272, 3306-3316.  
15698575 T.Cierpicki, J.H.Bushweller, and Z.S.Derewenda (2005).
Probing the supramodular architecture of a multidomain protein: the structure of syntenin in solution.
  Structure, 13, 319-327.  
15023337 F.C.Peterson, R.R.Penkert, B.F.Volkman, and K.E.Prehoda (2004).
Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition.
  Mol Cell, 13, 665-676.
PDB codes: 1ry4 1rzx
15663004 L.C.van den Berk, M.A.van Ham, M.M.te Lindert, T.Walma, J.Aelen, G.W.Vuister, and W.J.Hendriks (2004).
The interaction of PTP-BL PDZ domains with RIL: an enigmatic role for the RIL LIM domain.
  Mol Biol Rep, 31, 203-215.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer