 |
PDBsum entry 1nqf
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Transport protein
|
PDB id
|
|
|
|
1nqf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Struct Biol
10:394-401
(2003)
|
|
PubMed id:
|
|
|
|
|
| |
|
Substrate-induced transmembrane signaling in the cobalamin transporter BtuB.
|
|
D.P.Chimento,
A.K.Mohanty,
R.J.Kadner,
M.C.Wiener.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The outer membranes of Gram-negative bacteria possess transport proteins
essential for uptake of scarce nutrients. In TonB-dependent transporters, a
conserved sequence of seven residues, the Ton box, faces the periplasm and
interacts with the inner membrane TonB protein to energize an active transport
cycle. A critical mechanistic step is the structural change in the Ton box of
the transporter upon substrate binding; this essential transmembrane signaling
event increases the affinity of the transporter for TonB and enables active
transport to proceed. We have solved crystal structures of BtuB, the outer
membrane cobalamin transporter from Escherichia coli, in the absence and
presence of cyanocobalamin (vitamin B(12)). In these structures, the Ton box is
ordered and undergoes a conformational change in the presence of bound
substrate. Calcium has been implicated as a necessary factor for the
high-affinity binding (K(d) approximately 0.3 nM) of cyanocobalamin to BtuB. We
observe two bound calcium ions that order three extracellular loops of BtuB,
thus providing a direct (and unusual) structural role for calcium.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 2.
Figure 2. Crystallographic structures of BtuB. a, apo BtuB;
b, Ca^2+ -BtuB; and c, Ca^2+ -B[12] -BtuB. -barrel
domains are shown in green; hatch domains, in purple. Bound
calcium ions are shown in yellow in the Ca^2+ -BtuB and Ca^2+
-B[12] -BtuB structures. The bound cyanocobalamin (vitamin
B[12]) substrate is shown in space-filling representation in the
Ca^2+ -B[12] -BtuB structure. The left column depicts the
structures with extracellular loops pointing upwards and
periplasmic turns downwards; the -strands
of the barrel domain span the outer membrane. The right column
presents views, normal to the surface of the outer membrane,
looking down into the extracellular side of the structures. The
hatch domains extend from residues 6 -132, with the Ton box
located at 6 -12. The hatch domain is formed around a core of
four -strands.
A short linker (133 -136) connects the hatch to the 22-stranded
-barrel
domain (137 -594). Extracellular loops that are disordered in
the apo BtuB structure become partially ordered in the Ca^2+
-BtuB structure and fully ordered in the Ca^2+ -B[12] -BtuB
structure. This ordering occurs in the vicinity of the bound
calcium ions. Waters, detergent molecules and other (weakly)
bound ions are not shown (for clarity).
|
 |
Figure 5.
Figure 5. Calcium and cyanocobalamin binding in BtuB a,
Stereo view of the 'aspartate cage' binding the two calcium ions
(yellow) in the Ca^2+ -BtuB and Ca^2+ -B[12] -BtuB structures.
b, Stereo view of cyanocobalamin bound to BtuB. The view is
normal to the surface of the outer membrane, looking down into
the extracellular side. Residues within 4.5 Å of the substrate
are shown, with those of the hatch domain colored purple and
those from the barrel colored green. The calcium ions are
included to indicate the orientation of the molecule (which is
the same as that of Fig. 1).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(2003,
10,
394-401)
copyright 2003.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
T.Eitinger,
D.A.Rodionov,
M.Grote,
and
E.Schneider
(2011).
Canonical and ECF-type ATP-binding cassette importers in prokaryotes: diversity in modular organization and cellular functions.
|
| |
FEMS Microbiol Rev,
35,
3.
|
 |
|
|
|
|
 |
B.Luan,
R.Carr,
M.Caffrey,
and
A.Aksimentiev
(2010).
The effect of calcium on the conformation of cobalamin transporter BtuB.
|
| |
Proteins,
78,
1153-1162.
|
 |
|
|
|
|
 |
K.R.Vinothkumar,
and
R.Henderson
(2010).
Structures of membrane proteins.
|
| |
Q Rev Biophys,
43,
65.
|
 |
|
|
|
|
 |
N.J.Evans,
O.B.Harrison,
K.Clow,
J.P.Derrick,
I.M.Feavers,
and
M.C.Maiden
(2010).
Variation and molecular evolution of HmbR, the Neisseria meningitidis haemoglobin receptor.
|
| |
Microbiology,
156,
1384-1393.
|
 |
|
|
|
|
 |
N.Noinaj,
M.Guillier,
T.J.Barnard,
and
S.K.Buchanan
(2010).
TonB-dependent transporters: regulation, structure, and function.
|
| |
Annu Rev Microbiol,
64,
43-60.
|
 |
|
|
|
|
 |
R.H.Flores Jiménez,
M.A.Do Cao,
M.Kim,
and
D.S.Cafiso
(2010).
Osmolytes modulate conformational exchange in solvent-exposed regions of membrane proteins.
|
| |
Protein Sci,
19,
269-278.
|
 |
|
|
|
|
 |
S.D.Köhler,
A.Weber,
S.P.Howard,
W.Welte,
and
M.Drescher
(2010).
The proline-rich domain of TonB possesses an extended polyproline II-like conformation of sufficient length to span the periplasm of Gram-negative bacteria.
|
| |
Protein Sci,
19,
625-630.
|
 |
|
|
|
|
 |
T.C.Freeman,
and
W.C.Wimley
(2010).
A highly accurate statistical approach for the prediction of transmembrane beta-barrels.
|
| |
Bioinformatics,
26,
1965-1974.
|
 |
|
|
|
|
 |
W.G.Fusco,
G.Afonina,
I.Nepluev,
D.M.Cholon,
N.Choudhary,
P.A.Routh,
G.W.Almond,
P.E.Orndorff,
H.Staats,
M.M.Hobbs,
I.Leduc,
and
C.Elkins
(2010).
Immunization with the Haemophilus ducreyi hemoglobin receptor HgbA with adjuvant monophosphoryl lipid A protects swine from a homologous but not a heterologous challenge.
|
| |
Infect Immun,
78,
3763-3772.
|
 |
|
|
|
|
 |
E.Udho,
K.S.Jakes,
S.K.Buchanan,
K.J.James,
X.Jiang,
P.E.Klebba,
and
A.Finkelstein
(2009).
Reconstitution of bacterial outer membrane TonB-dependent transporters in planar lipid bilayer membranes.
|
| |
Proc Natl Acad Sci U S A,
106,
21990-21995.
|
 |
|
|
|
|
 |
J.Gumbart,
M.C.Wiener,
and
E.Tajkhorshid
(2009).
Coupling of calcium and substrate binding through loop alignment in the outer-membrane transporter BtuB.
|
| |
J Mol Biol,
393,
1129-1142.
|
 |
|
|
|
|
 |
K.Brillet,
A.Meksem,
E.Lauber,
C.Reimmann,
and
D.Cobessi
(2009).
Use of an in-house approach to study the three-dimensional structures of various outer membrane proteins: structure of the alcaligin outer membrane transporter FauA from Bordetella pertussis.
|
| |
Acta Crystallogr D Biol Crystallogr,
65,
326-331.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Krieg,
F.Huché,
K.Diederichs,
N.Izadi-Pruneyre,
A.Lecroisey,
C.Wandersman,
P.Delepelaire,
and
W.Welte
(2009).
Heme uptake across the outer membrane as revealed by crystal structures of the receptor-hemophore complex.
|
| |
Proc Natl Acad Sci U S A,
106,
1045-1050.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
A.L.Davidson,
E.Dassa,
C.Orelle,
and
J.Chen
(2008).
Structure, function, and evolution of bacterial ATP-binding cassette systems.
|
| |
Microbiol Mol Biol Rev,
72,
317.
|
 |
|
|
|
|
 |
B.E.Brooks,
and
S.K.Buchanan
(2008).
Signaling mechanisms for activation of extracytoplasmic function (ECF) sigma factors.
|
| |
Biochim Biophys Acta,
1778,
1930-1945.
|
 |
|
|
|
|
 |
C.N.Cornelissen
(2008).
Identification and characterization of gonococcal iron transport systems as potential vaccine antigens.
|
| |
Future Microbiol,
3,
287-298.
|
 |
|
|
|
|
 |
J.Diao,
and
E.Tajkhorshid
(2008).
Indirect role of Ca2+ in the assembly of extracellular matrix proteins.
|
| |
Biophys J,
95,
120-127.
|
 |
|
|
|
|
 |
J.Kim,
C.Gherasim,
and
R.Banerjee
(2008).
Decyanation of vitamin B12 by a trafficking chaperone.
|
| |
Proc Natl Acad Sci U S A,
105,
14551-14554.
|
 |
|
|
|
|
 |
K.J.James,
M.A.Hancock,
V.Moreau,
F.Molina,
and
J.W.Coulton
(2008).
TonB induces conformational changes in surface-exposed loops of FhuA, outer membrane receptor of Escherichia coli.
|
| |
Protein Sci,
17,
1679-1688.
|
 |
|
|
|
|
 |
M.M.Gromiha,
and
Y.Yabuki
(2008).
Functional discrimination of membrane proteins using machine learning techniques.
|
| |
BMC Bioinformatics,
9,
135.
|
 |
|
|
|
|
 |
Q.Xu,
M.Kim,
K.W.Ho,
P.Lachowicz,
G.E.Fanucci,
and
D.S.Cafiso
(2008).
Membrane hydrocarbon thickness modulates the dynamics of a membrane transport protein.
|
| |
Biophys J,
95,
2849-2858.
|
 |
|
|
|
|
 |
S.Jarchow,
C.Lück,
A.Görg,
and
A.Skerra
(2008).
Identification of potential substrate proteins for the periplasmic Escherichia coli chaperone Skp.
|
| |
Proteomics,
8,
4987-4994.
|
 |
|
|
|
|
 |
A.D.Ferguson,
C.A.Amezcua,
N.M.Halabi,
Y.Chelliah,
M.K.Rosen,
R.Ranganathan,
and
J.Deisenhofer
(2007).
Signal transduction pathway of TonB-dependent transporters.
|
| |
Proc Natl Acad Sci U S A,
104,
513-518.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
E.Cascales,
S.K.Buchanan,
D.Duché,
C.Kleanthous,
R.Lloubès,
K.Postle,
M.Riley,
S.Slatin,
and
D.Cavard
(2007).
Colicin biology.
|
| |
Microbiol Mol Biol Rev,
71,
158-229.
|
 |
|
|
|
|
 |
H.Li,
S.Grass,
T.Wang,
T.Liu,
and
J.W.St Geme
(2007).
Structure of the Haemophilus influenzae HMW1B translocator protein: evidence for a twin pore.
|
| |
J Bacteriol,
189,
7497-7502.
|
 |
|
|
|
|
 |
J.Gumbart,
M.C.Wiener,
and
E.Tajkhorshid
(2007).
Mechanics of force propagation in TonB-dependent outer membrane transport.
|
| |
Biophys J,
93,
496-504.
|
 |
|
|
|
|
 |
J.Wally,
and
S.K.Buchanan
(2007).
A structural comparison of human serum transferrin and human lactoferrin.
|
| |
Biometals,
20,
249-262.
|
 |
|
|
|
|
 |
L.Ma,
W.Kaserer,
R.Annamalai,
D.C.Scott,
B.Jin,
X.Jiang,
Q.Xiao,
H.Maymani,
L.M.Massis,
L.C.Ferreira,
S.M.Newton,
and
P.E.Klebba
(2007).
Evidence of ball-and-chain transport of ferric enterobactin through FepA.
|
| |
J Biol Chem,
282,
397-406.
|
 |
|
|
|
|
 |
M.Kim,
G.E.Fanucci,
and
D.S.Cafiso
(2007).
Substrate-dependent transmembrane signaling in TonB-dependent transporters is not conserved.
|
| |
Proc Natl Acad Sci U S A,
104,
11975-11980.
|
 |
|
|
|
|
 |
M.Masi,
P.Vuong,
M.Humbard,
K.Malone,
and
R.Misra
(2007).
Initial steps of colicin E1 import across the outer membrane of Escherichia coli.
|
| |
J Bacteriol,
189,
2667-2676.
|
 |
|
|
|
|
 |
S.Blanvillain,
D.Meyer,
A.Boulanger,
M.Lautier,
C.Guynet,
N.Denancé,
J.Vasse,
E.Lauber,
and
M.Arlat
(2007).
Plant carbohydrate scavenging through tonb-dependent receptors: a feature shared by phytopathogenic and aquatic bacteria.
|
| |
PLoS ONE,
2,
e224.
|
 |
|
|
|
|
 |
S.Devanathan,
and
K.Postle
(2007).
Studies on colicin B translocation: FepA is gated by TonB.
|
| |
Mol Microbiol,
65,
441-453.
|
 |
|
|
|
|
 |
S.K.Buchanan,
P.Lukacik,
S.Grizot,
R.Ghirlando,
M.M.Ali,
T.J.Barnard,
K.S.Jakes,
P.K.Kienker,
and
L.Esser
(2007).
Structure of colicin I receptor bound to the R-domain of colicin Ia: implications for protein import.
|
| |
EMBO J,
26,
2594-2604.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.M.Lukasik,
K.W.Ho,
and
D.S.Cafiso
(2007).
Molecular basis for substrate-dependent transmembrane signaling in an outer-membrane transporter.
|
| |
J Mol Biol,
370,
807-811.
|
 |
|
|
|
|
 |
W.Rabsch,
L.Ma,
G.Wiley,
F.Z.Najar,
W.Kaserer,
D.W.Schuerch,
J.E.Klebba,
B.A.Roe,
J.A.Laverde Gomez,
M.Schallmey,
S.M.Newton,
and
P.E.Klebba
(2007).
FepA- and TonB-dependent bacteriophage H8: receptor binding and genomic sequence.
|
| |
J Bacteriol,
189,
5658-5674.
|
 |
|
|
|
|
 |
X.Liang,
D.J.Campopiano,
and
P.J.Sadler
(2007).
Metals in membranes.
|
| |
Chem Soc Rev,
36,
968-992.
|
 |
|
|
|
|
 |
D.D.Shultis,
M.D.Purdy,
C.N.Banchs,
and
M.C.Wiener
(2006).
Outer membrane active transport: structure of the BtuB:TonB complex.
|
| |
Science,
312,
1396-1399.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
D.D.Shultis,
M.D.Purdy,
C.N.Banchs,
and
M.C.Wiener
(2006).
Crystallization and preliminary X-ray crystallographic analysis of the Escherichia coli outer membrane cobalamin transporter BtuB in complex with the carboxy-terminal domain of TonB.
|
| |
Acta Crystallogr Sect F Struct Biol Cryst Commun,
62,
638-641.
|
 |
|
|
|
|
 |
M.Kim,
Q.Xu,
G.E.Fanucci,
and
D.S.Cafiso
(2006).
Solutes modify a conformational transition in a membrane transport protein.
|
| |
Biophys J,
90,
2922-2929.
|
 |
|
|
|
|
 |
M.M.Gromiha,
and
M.Suwa
(2006).
Discrimination of outer membrane proteins using machine learning algorithms.
|
| |
Proteins,
63,
1031-1037.
|
 |
|
|
|
|
 |
P.D.Pawelek,
N.Croteau,
C.Ng-Thow-Hing,
C.M.Khursigara,
N.Moiseeva,
M.Allaire,
and
J.W.Coulton
(2006).
Structure of TonB in complex with FhuA, E. coli outer membrane receptor.
|
| |
Science,
312,
1399-1402.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Q.Xu,
J.F.Ellena,
M.Kim,
and
D.S.Cafiso
(2006).
Substrate-dependent unfolding of the energy coupling motif of a membrane transport protein determined by double electron-electron resonance.
|
| |
Biochemistry,
45,
10847-10854.
|
 |
|
|
|
|
 |
R.Jackups,
and
J.Liang
(2006).
Combinatorial model for sequence and spatial motif discovery in short sequence fragments: examples from beta-barrel membrane proteins.
|
| |
Conf Proc IEEE Eng Med Biol Soc,
1,
3470-3473.
|
 |
|
|
|
|
 |
T.Olczak
(2006).
Analysis of conserved glutamate residues in Porphyromonas gingivalis outer membrane receptor HmuR: toward a further understanding of heme uptake.
|
| |
Arch Microbiol,
186,
393-402.
|
 |
|
|
|
|
 |
V.Cherezov,
E.Yamashita,
W.Liu,
M.Zhalnina,
W.A.Cramer,
and
M.Caffrey
(2006).
In meso structure of the cobalamin transporter, BtuB, at 1.95 A resolution.
|
| |
J Mol Biol,
364,
716-734.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.G.Garrow,
A.Agnew,
and
D.R.Westhead
(2005).
TMB-Hunt: an amino acid composition based method to screen proteomes for beta-barrel transmembrane proteins.
|
| |
BMC Bioinformatics,
6,
56.
|
 |
|
|
|
|
 |
A.G.Garrow,
A.Agnew,
and
D.R.Westhead
(2005).
TMB-Hunt: a web server to screen sequence sets for transmembrane beta-barrel proteins.
|
| |
Nucleic Acids Res,
33,
W188-W192.
|
 |
|
|
|
|
 |
C.A.Fuller-Schaefer,
and
R.J.Kadner
(2005).
Multiple extracellular loops contribute to substrate binding and transport by the Escherichia coli cobalamin transporter BtuB.
|
| |
J Bacteriol,
187,
1732-1739.
|
 |
|
|
|
|
 |
D.L.Tzou,
E.Wasielewski,
M.A.Abdallah,
B.Kieffer,
and
R.A.Atkinson
(2005).
A low-temperature heteronuclear NMR study of two exchanging conformations of metal-bound pyoverdin PaA from Pseudomonas aeruginosa.
|
| |
Biopolymers,
79,
139-149.
|
 |
|
|
|
|
 |
D.P.Chimento,
R.J.Kadner,
and
M.C.Wiener
(2005).
Comparative structural analysis of TonB-dependent outer membrane transporters: implications for the transport cycle.
|
| |
Proteins,
59,
240-251.
|
 |
|
|
|
|
 |
H.A.Eisenhauer,
S.Shames,
P.D.Pawelek,
and
J.W.Coulton
(2005).
Siderophore transport through Escherichia coli outer membrane receptor FhuA with disulfide-tethered cork and barrel domains.
|
| |
J Biol Chem,
280,
30574-30580.
|
 |
|
|
|
|
 |
H.Neugebauer,
C.Herrmann,
W.Kammer,
G.Schwarz,
A.Nordheim,
and
V.Braun
(2005).
ExbBD-dependent transport of maltodextrins through the novel MalA protein across the outer membrane of Caulobacter crescentus.
|
| |
J Bacteriol,
187,
8300-8311.
|
 |
|
|
|
|
 |
H.Zhang,
and
W.A.Cramer
(2005).
Problems in obtaining diffraction-quality crystals of hetero-oligomeric integral membrane proteins.
|
| |
J Struct Funct Genomics,
6,
219-223.
|
 |
|
|
|
|
 |
J.Ködding,
F.Killig,
P.Polzer,
S.P.Howard,
K.Diederichs,
and
W.Welte
(2005).
Crystal structure of a 92-residue C-terminal fragment of TonB from Escherichia coli reveals significant conformational changes compared to structures of smaller TonB fragments.
|
| |
J Biol Chem,
280,
3022-3028.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.J.Park,
M.M.Gromiha,
P.Horton,
and
M.Suwa
(2005).
Discrimination of outer membrane proteins using support vector machines.
|
| |
Bioinformatics,
21,
4223-4229.
|
 |
|
|
|
|
 |
L.M.Hall,
S.C.Fawell,
X.Shi,
M.C.Faray-Kele,
J.Aduse-Opoku,
R.A.Whiley,
and
M.A.Curtis
(2005).
Sequence diversity and antigenic variation at the rag locus of Porphyromonas gingivalis.
|
| |
Infect Immun,
73,
4253-4262.
|
 |
|
|
|
|
 |
M.M.Gromiha,
and
M.Suwa
(2005).
A simple statistical method for discriminating outer membrane proteins with better accuracy.
|
| |
Bioinformatics,
21,
961-968.
|
 |
|
|
|
|
 |
N.G.Housden,
S.R.Loftus,
G.R.Moore,
R.James,
and
C.Kleanthous
(2005).
Cell entry mechanism of enzymatic bacterial colicins: porin recruitment and the thermodynamics of receptor binding.
|
| |
Proc Natl Acad Sci U S A,
102,
13849-13854.
|
 |
|
|
|
|
 |
P.G.Bagos,
T.D.Liakopoulos,
and
S.J.Hamodrakas
(2005).
Evaluation of methods for predicting the topology of beta-barrel outer membrane proteins and a consensus prediction method.
|
| |
BMC Bioinformatics,
6,
7.
|
 |
|
|
|
|
 |
S.Létoffé,
K.Wecker,
M.Delepierre,
P.Delepelaire,
and
C.Wandersman
(2005).
Activities of the Serratia marcescens heme receptor HasR and isolated plug and beta-barrel domains: the beta-barrel forms a heme-specific channel.
|
| |
J Bacteriol,
187,
4637-4645.
|
 |
|
|
|
|
 |
A.Sauter,
and
V.Braun
(2004).
Defined inactive FecA derivatives mutated in functional domains of the outer membrane transport and signaling protein of Escherichia coli K-12.
|
| |
J Bacteriol,
186,
5303-5310.
|
 |
|
|
|
|
 |
B.van den Berg,
P.N.Black,
W.M.Clemons,
and
T.A.Rapoport
(2004).
Crystal structure of the long-chain fatty acid transporter FadL.
|
| |
Science,
304,
1506-1509.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
C.M.Khursigara,
G.De Crescenzo,
P.D.Pawelek,
and
J.W.Coulton
(2004).
Enhanced binding of TonB to a ligand-loaded outer membrane receptor: role of the oligomeric state of TonB in formation of a functional FhuA.TonB complex.
|
| |
J Biol Chem,
279,
7405-7412.
|
 |
|
|
|
|
 |
C.Wandersman,
and
P.Delepelaire
(2004).
Bacterial iron sources: from siderophores to hemophores.
|
| |
Annu Rev Microbiol,
58,
611-647.
|
 |
|
|
|
|
 |
D.Cobessi,
H.Célia,
and
F.Pattus
(2004).
Crystallization and X-ray diffraction analyses of the outer membrane pyochelin receptor FptA from Pseudomonas aeruginosa.
|
| |
Acta Crystallogr D Biol Crystallogr,
60,
1919-1921.
|
 |
|
|
|
|
 |
F.Endriss,
and
V.Braun
(2004).
Loop deletions indicate regions important for FhuA transport and receptor functions in Escherichia coli.
|
| |
J Bacteriol,
186,
4818-4823.
|
 |
|
|
|
|
 |
I.J.Schalk,
W.W.Yue,
and
S.K.Buchanan
(2004).
Recognition of iron-free siderophores by TonB-dependent iron transporters.
|
| |
Mol Microbiol,
54,
14-22.
|
 |
|
|
|
|
 |
J.Koedding,
P.Howard,
L.Kaufmann,
P.Polzer,
A.Lustig,
and
W.Welte
(2004).
Dimerization of TonB is not essential for its binding to the outer membrane siderophore receptor FhuA of Escherichia coli.
|
| |
J Biol Chem,
279,
9978-9986.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.L.Hilsenbeck,
H.Park,
G.Chen,
B.Youn,
K.Postle,
and
C.Kang
(2004).
Crystal structure of the cytotoxic bacterial protein colicin B at 2.5 A resolution.
|
| |
Mol Microbiol,
51,
711-720.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.P.Locher
(2004).
Structure and mechanism of ABC transporters.
|
| |
Curr Opin Struct Biol,
14,
426-431.
|
 |
|
|
|
|
 |
L.V.Misquitta,
Y.Misquitta,
V.Cherezov,
O.Slattery,
J.M.Mohan,
D.Hart,
M.Zhalnina,
W.A.Cramer,
and
M.Caffrey
(2004).
Membrane protein crystallization in lipidic mesophases with tailored bilayers.
|
| |
Structure,
12,
2113-2124.
|
 |
|
|
|
|
 |
M.Baaden,
and
M.S.Sansom
(2004).
OmpT: molecular dynamics simulations of an outer membrane enzyme.
|
| |
Biophys J,
87,
2942-2953.
|
 |
|
|
|
|
 |
P.G.Bagos,
T.D.Liakopoulos,
I.C.Spyropoulos,
and
S.J.Hamodrakas
(2004).
A Hidden Markov Model method, capable of predicting and discriminating beta-barrel outer membrane proteins.
|
| |
BMC Bioinformatics,
5,
29.
|
 |
|
|
|
|
 |
R.Annamalai,
B.Jin,
Z.Cao,
S.M.Newton,
and
P.E.Klebba
(2004).
Recognition of ferric catecholates by FepA.
|
| |
J Bacteriol,
186,
3578-3589.
|
 |
|
|
|
|
 |
S.D.Zakharov,
V.Y.Eroukova,
T.I.Rokitskaya,
M.V.Zhalnina,
O.Sharma,
P.J.Loll,
H.I.Zgurskaya,
Y.N.Antonenko,
and
W.A.Cramer
(2004).
Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import.
|
| |
Biophys J,
87,
3901-3911.
|
 |
|
|
|
|
 |
S.Létoffé,
P.Delepelaire,
and
C.Wandersman
(2004).
Free and hemophore-bound heme acquisitions through the outer membrane receptor HasR have different requirements for the TonB-ExbB-ExbD complex.
|
| |
J Bacteriol,
186,
4067-4074.
|
 |
|
|
|
|
 |
Y.Zheng,
R.J.Roberts,
and
S.Kasif
(2004).
Segmentally variable genes: a new perspective on adaptation.
|
| |
PLoS Biol,
2,
E81.
|
 |
|
|
|
|
 |
A.K.Mohanty,
C.M.Bishop,
T.C.Bishop,
W.C.Wimley,
and
M.C.Wiener
(2003).
Enzymatic E-colicins bind to their target receptor BtuB by presentation of a small binding epitope on a coiled-coil scaffold.
|
| |
J Biol Chem,
278,
40953-40958.
|
 |
|
|
|
|
 |
F.Endriss,
M.Braun,
H.Killmann,
and
V.Braun
(2003).
Mutant analysis of the Escherichia coli FhuA protein reveals sites of FhuA activity.
|
| |
J Bacteriol,
185,
4683-4692.
|
 |
|
|
|
|
 |
G.E.Fanucci,
N.Cadieux,
R.J.Kadner,
and
D.S.Cafiso
(2003).
Competing ligands stabilize alternate conformations of the energy coupling motif of a TonB-dependent outer membrane transporter.
|
| |
Proc Natl Acad Sci U S A,
100,
11382-11387.
|
 |
|
|
|
|
 |
G.Kurisu,
S.D.Zakharov,
M.V.Zhalnina,
S.Bano,
V.Y.Eroukova,
T.I.Rokitskaya,
Y.N.Antonenko,
M.C.Wiener,
and
W.A.Cramer
(2003).
The structure of BtuB with bound colicin E3 R-domain implies a translocon.
|
| |
Nat Struct Biol,
10,
948-954.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Nikaido
(2003).
Molecular basis of bacterial outer membrane permeability revisited.
|
| |
Microbiol Mol Biol Rev,
67,
593-656.
|
 |
|
|
|
|
 |
K.Postle,
and
R.J.Kadner
(2003).
Touch and go: tying TonB to transport.
|
| |
Mol Microbiol,
49,
869-882.
|
 |
|
|
|
|
 |
N.Cadieux,
P.G.Phan,
D.S.Cafiso,
and
R.J.Kadner
(2003).
Differential substrate-induced signaling through the TonB-dependent transporter BtuB.
|
| |
Proc Natl Acad Sci U S A,
100,
10688-10693.
|
 |
|
|
|
|
 |
W.C.Wimley
(2003).
The versatile beta-barrel membrane protein.
|
| |
Curr Opin Struct Biol,
13,
404-411.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |