spacer
spacer

PDBsum entry 1kv7

Go to PDB code: 
protein ligands metals links
Oxidoreductase PDB id
1kv7

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
463 a.a. *
Ligands
C2O
Metals
_CU ×2
Waters ×507
* Residue conservation analysis
PDB id:
1kv7
Name: Oxidoreductase
Title: Crystal structure of cueo, a multi-copper oxidase from e. Coli involved in copper homeostasis
Structure: Probable blue-copper protein yack. Chain: a. Synonym: cueo. Engineered: yes
Source: Escherichia coli. Organism_taxid: 562. Expressed in: escherichia coli bl21. Expression_system_taxid: 511693.
Resolution:
1.40Å     R-factor:   0.185     R-free:   0.221
Authors: S.A.Roberts,A.Weichsel,G.Grass,K.Thakali,J.T.Hazzard,G.Tollin, C.Rensing,W.R.Montfort
Key ref:
S.A.Roberts et al. (2002). Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli. Proc Natl Acad Sci U S A, 99, 2766-2771. PubMed id: 11867755 DOI: 10.1073/pnas.052710499
Date:
25-Jan-02     Release date:   06-Feb-02    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P36649  (CUEO_ECOLI) -  Multicopper oxidase CueO from Escherichia coli (strain K12)
Seq:
Struc:
516 a.a.
463 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.1.16.3.4  - cuproxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 4 Cu+ + O2 + 4 H+ = 4 Cu2+ + 2 H2O
4 × Cu(+)
+ O2
+ 4 × H(+)
= 4 × Cu(2+)
+ 2 × H2O
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Key reference    
 
 
DOI no: 10.1073/pnas.052710499 Proc Natl Acad Sci U S A 99:2766-2771 (2002)
PubMed id: 11867755  
 
 
Crystal structure and electron transfer kinetics of CueO, a multicopper oxidase required for copper homeostasis in Escherichia coli.
S.A.Roberts, A.Weichsel, G.Grass, K.Thakali, J.T.Hazzard, G.Tollin, C.Rensing, W.R.Montfort.
 
  ABSTRACT  
 
CueO (YacK), a multicopper oxidase, is part of the copper-regulatory cue operon in Escherichia coli. The crystal structure of CueO has been determined to 1.4-A resolution by using multiple anomalous dispersion phasing and an automated building procedure that yielded a nearly complete model without manual intervention. This is the highest resolution multicopper oxidase structure yet determined and provides a particularly clear view of the four coppers at the catalytic center. The overall structure is similar to those of laccase and ascorbate oxidase, but contains an extra 42-residue insert in domain 3 that includes 14 methionines, nine of which lie in a helix that covers the entrance to the type I (T1, blue) copper site. The trinuclear copper cluster has a conformation not previously seen: the Cu-O-Cu binuclear species is nearly linear (Cu-O-Cu bond angle = 170 degrees) and the third (type II) copper lies only 3.1 A from the bridging oxygen. CueO activity was maximal at pH 6.5 and in the presence of >100 microM Cu(II). Measurements of intermolecular and intramolecular electron transfer with laser flash photolysis in the absence of Cu(II) show that, in addition to the normal reduction of the T1 copper, which occurs with a slow rate (k = 4 x 10(7) M(-1)x (-1)), a second electron transfer process occurs to an unknown site, possibly the trinuclear cluster, with k = 9 x 10(7) M(-1) x (-1), followed by a slow intramolecular electron transfer to T1 copper (k approximately 10 s(-1)). These results suggest the methionine-rich helix blocks access to the T1 site in the absence of excess copper.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Representative electron density (2 F[o] F[c] [c]) after automatic model building and one round of refinement, before manual intervention. The model shown is in the region surrounding the trinuclear copper center and was built automatically with ARP/WARP.
Figure 4.
Fig. 4. Stereoview showing the geometry of the T1 and trinuclear copper sites. Shown are the copper atoms (cyan), oxygen atoms (red), HCH residues (499-501), nitrogens (blue), and sulfurs (yellow) from ligating histidines, cysteines, and methionines. T1 Cu is ligated to His-443, His-503, Cys-500, and Met-510. T2 Cu is ligated to His-101, His-446, and a water molecule. Cu2 is ligated to His-103, His-141, His-501, and the bridging oxygen. Cu3 is ligated to His-143, His-448, His-499, and the bridging oxygen.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21298193 F.G.Mutti, M.Gullotti, L.Casella, L.Santagostini, R.Pagliarin, K.K.Andersson, M.F.Iozzi, and G.Zoppellaro (2011).
A new chiral, poly-imidazole N8-ligand and the related di- and tri-copper(II) complexes: synthesis, theoretical modelling, spectroscopic properties, and biomimetic stereoselective oxidations.
  Dalton Trans, 40, 5436-5457.  
21120471 J.Zeng, X.Lin, J.Zhang, X.Li, and M.H.Wong (2011).
Oxidation of polycyclic aromatic hydrocarbons by the bacterial laccase CueO from E. coli.
  Appl Microbiol Biotechnol, 89, 1841-1849.  
21384090 R.Nandakumar, C.Espirito Santo, N.Madayiputhiya, and G.Grass (2011).
Quantitative proteomic profiling of the Escherichia coli response to metallic copper surfaces.
  Biometals, 24, 429-444.  
21327414 S.Herter, M.Schmidt, M.L.Thompson, A.Mikolasch, and F.Schauer (2011).
A new phenol oxidase produced during melanogenesis and encystment stage in the nitrogen-fixing soil bacterium Azotobacter chroococcum.
  Appl Microbiol Biotechnol, 90, 1037-1049.  
20963410 Z.Fang, T.Li, Q.Wang, X.Zhang, H.Peng, W.Fang, Y.Hong, H.Ge, and Y.Xiao (2011).
A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability.
  Appl Microbiol Biotechnol, 89, 1103-1110.  
20377263 A.J.Augustine, C.Kjaergaard, M.Qayyum, L.Ziegler, D.J.Kosman, K.O.Hodgson, B.Hedman, and E.I.Solomon (2010).
Systematic perturbation of the trinuclear copper cluster in the multicopper oxidases: the role of active site asymmetry in its reduction of O2 to H2O.
  J Am Chem Soc, 132, 6057-6067.  
20597980 A.T.Fernandes, J.M.Damas, S.Todorovic, R.Huber, M.C.Baratto, R.Pogni, C.M.Soares, and L.O.Martins (2010).
The multicopper oxidase from the archaeon Pyrobaculum aerophilum shows nitrous oxide reductase activity.
  FEBS J, 277, 3176-3189.  
20822511 I.Bento, C.S.Silva, Z.Chen, L.O.Martins, P.F.Lindley, and C.M.Soares (2010).
Mechanisms underlying dioxygen reduction in laccases. Structural and modelling studies focusing on proton transfer.
  BMC Struct Biol, 10, 28.
PDB codes: 2x87 2x88
20231415 M.E.Achard, J.J.Tree, J.A.Holden, K.R.Simpfendorfer, O.L.Wijburg, R.A.Strugnell, M.A.Schembri, M.J.Sweet, M.P.Jennings, and A.G.McEwan (2010).
The multi-copper-ion oxidase CueO of Salmonella enterica serovar Typhimurium is required for systemic virulence.
  Infect Immun, 78, 2312-2319.  
20358193 M.Ye, G.Li, W.Q.Liang, and Y.H.Liu (2010).
Molecular cloning and characterization of a novel metagenome-derived multicopper oxidase with alkaline laccase activity and highly soluble expression.
  Appl Microbiol Biotechnol, 87, 1023-1031.  
19966030 S.Uthandi, B.Saad, M.A.Humbard, and J.A.Maupin-Furlow (2010).
LccA, an archaeal laccase secreted as a highly stable glycoprotein into the extracellular medium by Haloferax volcanii.
  Appl Environ Microbiol, 76, 733-743.  
19034452 C.Pezzella, F.Autore, P.Giardina, A.Piscitelli, G.Sannia, and V.Faraco (2009).
The Pleurotus ostreatus laccase multi-gene family: isolation and heterologous expression of new family members.
  Curr Genet, 55, 45-57.  
19346471 J.Yoon, S.Fujii, and E.I.Solomon (2009).
Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
  Proc Natl Acad Sci U S A, 106, 6585-6590.  
19297322 K.Kataoka, R.Sugiyama, S.Hirota, M.Inoue, K.Urata, Y.Minagawa, D.Seo, and T.Sakurai (2009).
Four-electron reduction of dioxygen by a multicopper oxidase, CueO, and roles of Asp112 and Glu506 located adjacent to the trinuclear copper center.
  J Biol Chem, 284, 14405-14413.  
19236694 K.Koschorreck, R.D.Schmid, and V.B.Urlacher (2009).
Improving the functional expression of a Bacillus licheniformis laccase by random and site-directed mutagenesis.
  BMC Biotechnol, 9, 12.  
  20305734 K.M.Lancaster, S.DeBeer George, K.Yokoyama, J.H.Richards, and H.B.Gray (2009).
Type-zero copper proteins.
  Nat Chem, 1, 711-715.
PDB codes: 3fpy 3fq1 3fq2 3fqy
19666509 M.J.Tarry, E.Schäfer, S.Chen, G.Buchanan, N.P.Greene, S.M.Lea, T.Palmer, H.R.Saibil, and B.C.Berks (2009).
Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.
  Proc Natl Acad Sci U S A, 106, 13284-13289.  
19135451 M.Tarry, S.J.Arends, P.Roversi, E.Piette, F.Sargent, B.C.Berks, D.S.Weiss, and S.M.Lea (2009).
The Escherichia coli cell division protein and model Tat substrate SufI (FtsP) localizes to the septal ring and has a multicopper oxidase-like structure.
  J Mol Biol, 386, 504-519.
PDB codes: 2uxt 2uxv
19224923 T.J.Lawton, L.A.Sayavedra-Soto, D.J.Arp, and A.C.Rosenzweig (2009).
Crystal structure of a two-domain multicopper oxidase: implications for the evolution of multicopper blue proteins.
  J Biol Chem, 284, 10174-10180.
PDB code: 3g5w
18830684 T.von Rozycki, and D.H.Nies (2009).
Cupriavidus metallidurans: evolution of a metal-resistant bacterium.
  Antonie Van Leeuwenhoek, 96, 115-139.  
18165363 G.J.Dick, J.W.Torpey, T.J.Beveridge, and B.M.Tebo (2008).
Direct identification of a bacterial manganese(II) oxidase, the multicopper oxidase MnxG, from spores of several different marine Bacillus species.
  Appl Environ Microbiol, 74, 1527-1534.  
18723628 J.J.Tree, G.C.Ulett, C.L.Ong, D.J.Trott, A.G.McEwan, and M.A.Schembri (2008).
Trade-off between iron uptake and protection against oxidative stress: deletion of cueO promotes uropathogenic Escherichia coli virulence in a mouse model of urinary tract infection.
  J Bacteriol, 190, 6909-6912.  
18330561 K.Koschorreck, S.M.Richter, A.B.Ene, E.Roduner, R.D.Schmid, and V.B.Urlacher (2008).
Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids.
  Appl Microbiol Biotechnol, 79, 217-224.  
18931123 S.J.Hall, A.Hitchcock, C.S.Butler, and D.J.Kelly (2008).
A Multicopper oxidase (Cj1516) and a CopA homologue (Cj1161) are major components of the copper homeostasis system of Campylobacter jejuni.
  J Bacteriol, 190, 8075-8085.  
18772935 Y.Li, J.Yin, G.Qu, L.Lv, Y.Li, S.Yang, and X.G.Wang (2008).
Gene cloning, protein purification, and enzymatic properties of multicopper oxidase, from Klebsiella sp. 601.
  Can J Microbiol, 54, 725-733.  
17918838 A.J.Augustine, L.Quintanar, C.S.Stoj, D.J.Kosman, and E.I.Solomon (2007).
Spectroscopic and kinetic studies of perturbed trinuclear copper clusters: the role of protons in reductive cleavage of the O-O bond in the multicopper oxidase Fet3p.
  J Am Chem Soc, 129, 13118-13126.  
17451433 A.T.Fernandes, C.M.Soares, M.M.Pereira, R.Huber, G.Grass, and L.O.Martins (2007).
A robust metallo-oxidase from the hyperthermophilic bacterium Aquifex aeolicus.
  FEBS J, 274, 2683-2694.  
17918839 J.Yoon, and E.I.Solomon (2007).
Electronic structure of the peroxy intermediate and its correlation to the native intermediate in the multicopper oxidases: insights into the reductive cleavage of the o-o bond.
  J Am Chem Soc, 129, 13127-13136.  
17268593 U.Ryde (2007).
Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry.
  Dalton Trans, (), 607-625.  
17011183 A.C.Rosenzweig, and M.H.Sazinsky (2006).
Structural insights into dioxygen-activating copper enzymes.
  Curr Opin Struct Biol, 16, 729-735.  
16944230 A.V.Lyashenko, I.Bento, V.N.Zaitsev, N.E.Zhukhlistova, Y.N.Zhukova, A.G.Gabdoulkhakov, E.Y.Morgunova, W.Voelter, G.S.Kachalova, E.V.Stepanova, O.V.Koroleva, V.S.Lamzin, V.I.Tishkov, C.Betzel, P.F.Lindley, and A.M.Mikhailov (2006).
X-ray structural studies of the fungal laccase from Cerrena maxima.
  J Biol Inorg Chem, 11, 963-973.  
  17012782 A.V.Lyashenko, N.E.Zhukhlistova, A.G.Gabdoulkhakov, Y.N.Zhukova, W.Voelter, V.N.Zaitsev, I.Bento, E.V.Stepanova, G.S.Kachalova, O.V.Koroleva, E.A.Cherkashyn, V.I.Tishkov, V.S.Lamzin, K.Schirwitz, E.Y.Morgunova, C.Betzel, P.F.Lindley, and A.M.Mikhailov (2006).
Purification, crystallization and preliminary X-ray study of the fungal laccase from Cerrena maxima.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 62, 954-957.
PDB code: 2h5u
16487321 J.Wiethaus, G.F.Wildner, and B.Masepohl (2006).
The multicopper oxidase CutO confers copper tolerance to Rhodobacter capsulatus.
  FEMS Microbiol Lett, 256, 67-74.  
16230618 A.B.Taylor, C.S.Stoj, L.Ziegler, D.J.Kosman, and P.J.Hart (2005).
The copper-iron connection in biology: structure of the metallo-oxidase Fet3p.
  Proc Natl Acad Sci U S A, 102, 15459-15464.
PDB code: 1zpu
16158236 G.Grass, B.Fricke, and D.H.Nies (2005).
Control of expression of a periplasmic nickel efflux pump by periplasmic nickel concentrations.
  Biometals, 18, 437-448.  
15774872 M.Egler, C.Grosse, G.Grass, and D.H.Nies (2005).
Role of the extracytoplasmic function protein family sigma factor RpoE in metal resistance of Escherichia coli.
  J Bacteriol, 187, 2297-2307.  
15317788 G.Grass, K.Thakali, P.E.Klebba, D.Thieme, A.Müller, G.F.Wildner, and C.Rensing (2004).
Linkage between catecholate siderophores and the multicopper oxidase CueO in Escherichia coli.
  J Bacteriol, 186, 5826-5833.  
15295117 M.C.Machczynski, E.Vijgenboom, B.Samyn, and G.W.Canters (2004).
Characterization of SLAC: a small laccase from Streptomyces coelicolor with unprecedented activity.
  Protein Sci, 13, 2388-2397.  
15516598 S.K.Singh, G.Grass, C.Rensing, and W.R.Montfort (2004).
Cuprous oxidase activity of CueO from Escherichia coli.
  J Bacteriol, 186, 7815-7817.  
12829268 C.Rensing, and G.Grass (2003).
Escherichia coli mechanisms of copper homeostasis in a changing environment.
  FEMS Microbiol Rev, 27, 197-213.  
12651950 F.Arnesano, L.Banci, I.Bertini, S.Mangani, and A.R.Thompsett (2003).
A redox switch in CopC: an intriguing copper trafficking protein that binds copper(I) and copper(II) at different sites.
  Proc Natl Acad Sci U S A, 100, 3814-3819.
PDB code: 1nm4
12940994 K.Hatzixanthis, T.Palmer, and F.Sargent (2003).
A subset of bacterial inner membrane proteins integrated by the twin-arginine translocase.
  Mol Microbiol, 49, 1377-1390.  
12198312 F.J.Enguita, P.M.Matias, L.O.Martins, D.Plácido, A.O.Henriques, and M.A.Carrondo (2002).
Spore-coat laccase CotA from Bacillus subtilis: crystallization and preliminary X-ray characterization by the MAD method.
  Acta Crystallogr D Biol Crystallogr, 58, 1490-1493.  
12118243 N.Hakulinen, L.L.Kiiskinen, K.Kruus, M.Saloheimo, A.Paananen, A.Koivula, and J.Rouvinen (2002).
Crystal structure of a laccase from Melanocarpus albomyces with an intact trinuclear copper site.
  Nat Struct Biol, 9, 601-605.
PDB code: 1gw0
12377116 S.Puig, E.M.Rees, and D.J.Thiele (2002).
The ABCDs of periplasmic copper trafficking.
  Structure, 10, 1292-1295.  
12354238 W.M.Huston, M.P.Jennings, and A.G.McEwan (2002).
The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition.
  Mol Microbiol, 45, 1741-1750.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer