spacer
spacer

PDBsum entry 1jv6

Go to PDB code: 
protein ligands links
Ion transport PDB id
1jv6

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
208 a.a. *
Ligands
RET
LI1 ×8
Waters ×34
* Residue conservation analysis
PDB id:
1jv6
Name: Ion transport
Title: Bacteriorhodopsin d85s/f219l double mutant at 2.00 angstrom resolution
Structure: Bacteriorhodopsin. Chain: a. Synonym: br. Engineered: yes. Mutation: yes
Source: Halobacterium salinarum. Organism_taxid: 2242. Gene: bop. Expressed in: halobacterium salinarum. Expression_system_taxid: 2242.
Resolution:
2.00Å     R-factor:   0.222     R-free:   0.240
Authors: S.Rouhani,J.-P.Cartailler,M.T.Facciotti,P.Walian,R.Needleman, J.K.Lanyi,R.M.Glaeser,H.Luecke
Key ref:
S.Rouhani et al. (2001). Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate. J Mol Biol, 313, 615-628. PubMed id: 11676543 DOI: 10.1006/jmbi.2001.5066
Date:
28-Aug-01     Release date:   31-Oct-01    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P02945  (BACR_HALSA) -  Bacteriorhodopsin from Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1)
Seq:
Struc:
262 a.a.
208 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 2 residue positions (black crosses)

 

 
DOI no: 10.1006/jmbi.2001.5066 J Mol Biol 313:615-628 (2001)
PubMed id: 11676543  
 
 
Crystal structure of the D85S mutant of bacteriorhodopsin: model of an O-like photocycle intermediate.
S.Rouhani, J.P.Cartailler, M.T.Facciotti, P.Walian, R.Needleman, J.K.Lanyi, R.M.Glaeser, H.Luecke.
 
  ABSTRACT  
 
Crystal structures are reported for the D85S and D85S/F219L mutants of the light-driven proton/hydroxyl-pump bacteriorhodopsin. These mutants crystallize in the orthorhombic C222(1) spacegroup, and provide the first demonstration that monoolein-based cubic lipid phase crystallization can support the growth of well-diffracting crystals in non-hexagonal spacegroups. Both structures exhibit similar and substantial differences relative to wild-type bacteriorhodopsin, suggesting that they represent inherent features resulting from neutralization of the Schiff base counterion Asp85. We argue that these structures provide a model for the last photocycle intermediate (O) of bacteriorhodopsin, in which Asp85 is protonated, the proton release group is deprotonated, and the retinal has reisomerized to all-trans. Unlike for the M and N photointermediates, where structural changes occur mainly on the cytoplasmic side, here the large-scale changes are confined to the extracellular side. As in the M intermediate, the side-chain of Arg82 is in a downward configuration, and in addition, a pi-cloud hydrogen bond forms between Trp189 NE1 and Trp138. On the cytoplasmic side, there is increased hydration near the surface, suggesting how Asp96 might communicate with the bulk during the rise of the O intermediate.
 
  Selected figure(s)  
 
Figure 5.
Figure 5. View of the extracellu- lar side, showing an extensive hydrogen-bonding network of side- chains and water molecules, as well as the alternate conformation of Glu194. Not only is the hydro- gen-bonding network between the Schiff base and the proton release group broken, but Arg82 is now in a downward configuration with hydrogen bonds towards the pro- ton release group similar to what is observed for M intermediates. Somewhat long hydrogen bonds exist from Arg82-NH2 to water 408 (3.44 Å ) and from Arg82-NH1 to water 409 (3.25 Å ).
Figure 7.
Figure 7. View of the cyto- plasmic side, showing Phe42 acting as a barrier between Asp96 and the bulk aqueous phase. This region contains numerous ordered water molecules that form a hydrogen- bonding network and are likely to be involved in the reprotonation of Asp96 during the N ! O tran- sition.
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2001, 313, 615-628) copyright 2001.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21539797 J.Holterhues, E.Bordignon, D.Klose, C.Rickert, J.P.Klare, S.Martell, L.Li, M.Engelhard, and H.J.Steinhoff (2011).
The Signal Transfer from the Receptor NpSRII to the Transducer NpHtrII Is Not Hampered by the D75N Mutation.
  Biophys J, 100, 2275-2282.  
20407703 R.P.Baumann, M.Schranz, and N.Hampp (2010).
Bending of purple membranes in dependence on the pH analyzed by AFM and single molecule force spectroscopy.
  Phys Chem Chem Phys, 12, 4329-4335.  
20164644 S.Westenhoff, E.Nazarenko, E.Malmerberg, J.Davidsson, G.Katona, and R.Neutze (2010).
Time-resolved structural studies of protein reaction dynamics: a smorgasbord of X-ray approaches.
  Acta Crystallogr A, 66, 207-219.  
18767148 H.C.Watanabe, T.Ishikura, and T.Yamato (2009).
Theoretical modeling of the O-intermediate structure of bacteriorhodopsin.
  Proteins, 75, 53-61.  
19267877 I.Kawamura, J.Tanabe, M.Ohmine, S.Yamaguchi, S.Tuzi, and A.Naito (2009).
Participation of the BC Loop in the Correct Folding of Bacteriorhodopsin as Revealed by Solid-state NMR.
  Photochem Photobiol, 85, 624-630.  
19267875 M.Kubo, T.Kikukawa, S.Miyauchi, A.Seki, M.Kamiya, T.Aizawa, K.Kawano, N.Kamo, and M.Demura (2009).
Role of Arg123 in Light-driven Anion Pump Mechanisms of pharaonis Halorhodopsin.
  Photochem Photobiol, 85, 547-555.  
19405533 P.Phatak, J.S.Frähmcke, M.Wanko, M.Hoffmann, P.Strodel, J.C.Smith, S.Suhai, A.N.Bondar, and M.Elstner (2009).
Long-distance proton transfer with a break in the bacteriorhodopsin active site.
  J Am Chem Soc, 131, 7064-7078.  
19488399 T.Hirai, and S.Subramaniam (2009).
Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses.
  PLoS One, 4, e5769.  
19643594 T.Hirai, S.Subramaniam, and J.K.Lanyi (2009).
Structural snapshots of conformational changes in a seven-helix membrane protein: lessons from bacteriorhodopsin.
  Curr Opin Struct Biol, 19, 433-439.  
18922772 H.Luecke, B.Schobert, J.Stagno, E.S.Imasheva, J.M.Wang, S.P.Balashov, and J.K.Lanyi (2008).
Crystallographic structure of xanthorhodopsin, the light-driven proton pump with a dual chromophore.
  Proc Natl Acad Sci U S A, 105, 16561-16565.
PDB code: 3ddl
18184580 M.Andersson, J.Vincent, D.van der Spoel, J.Davidsson, and R.Neutze (2008).
A proposed time-resolved X-ray scattering approach to track local and global conformational changes in membrane transport proteins.
  Structure, 16, 21-28.  
17196982 D.Chen, J.M.Wang, and J.K.Lanyi (2007).
Electron paramagnetic resonance study of structural changes in the O photointermediate of bacteriorhodopsin.
  J Mol Biol, 366, 790-805.  
16552137 E.Portuondo-Campa, S.Schenkl, M.Dolder, M.Chergui, E.M.Landau, and S.Haacke (2006).
Absorption spectroscopy of three-dimensional bacteriorhodopsin crystals at cryogenic temperatures: effects of altered hydration.
  Acta Crystallogr D Biol Crystallogr, 62, 368-374.  
16613489 I.H.van Stokkum, B.Gobets, T.Gensch, F.Mourik, K.J.Hellingwerf, R.Grondelle, and J.T.Kennis (2006).
(Sub)-picosecond spectral evolution of fluorescence in photoactive proteins studied with a synchroscan streak camera system.
  Photochem Photobiol, 82, 380-388.  
17002299 J.K.Lanyi, and B.Schobert (2006).
Propagating structural perturbation inside bacteriorhodopsin: crystal structures of the M state and the D96A and T46V mutants.
  Biochemistry, 45, 12003-12010.
PDB codes: 2i1x 2i20 2i21
15853800 A.J.Mason, G.J.Turner, and C.Glaubitz (2005).
Conformational heterogeneity of transmembrane residues after the Schiff base reprotonation of bacteriorhodopsin: 15N CPMAS NMR of D85N/T170C membranes.
  FEBS J, 272, 2152-2164.  
16853051 N.B.Gillespie, L.Ren, L.Ramos, H.Daniell, D.Dews, K.A.Utzat, J.A.Stuart, C.H.Buck, and R.R.Birge (2005).
Characterization and photochemistry of 13-desmethyl bacteriorhodopsin.
  J Phys Chem B, 109, 16142-16152.  
15240452 H.Jang, P.S.Crozier, M.J.Stevens, and T.B.Woolf (2004).
How environment supports a state: molecular dynamics simulations of two states in bacteriorhodopsin suggest lipid and water compensation.
  Biophys J, 87, 129-145.  
14977418 J.K.Lanyi (2004).
Bacteriorhodopsin.
  Annu Rev Physiol, 66, 665-688.  
14532280 K.Edman, A.Royant, G.Larsson, F.Jacobson, T.Taylor, D.van der Spoel, E.M.Landau, E.Pebay-Peyroula, and R.Neutze (2004).
Deformation of helix C in the low temperature L-intermediate of bacteriorhodopsin.
  J Biol Chem, 279, 2147-2158.
PDB codes: 1r3p 1vjm
15362229 M.T.Facciotti, S.Rouhani-Manshadi, and R.M.Glaeser (2004).
Energy transduction in transmembrane ion pumps.
  Trends Biochem Sci, 29, 445-451.  
15520287 N.S.Baliga, R.Bonneau, M.T.Facciotti, M.Pan, G.Glusman, E.W.Deutsch, P.Shannon, Y.Chiu, R.S.Weng, R.R.Gan, P.Hung, S.V.Date, E.Marcotte, L.Hood, and W.V.Ng (2004).
Genome sequence of Haloarcula marismortui: a halophilic archaeon from the Dead Sea.
  Genome Res, 14, 2221-2234.  
12524320 B.Schätzler, N.A.Dencher, J.Tittor, D.Oesterhelt, S.Yaniv-Checover, E.Nachliel, and M.Gutman (2003).
Subsecond proton-hole propagation in bacteriorhodopsin.
  Biophys J, 84, 671-686.  
12598369 J.P.Cartailler, and H.Luecke (2003).
X-ray crystallographic analysis of lipid-protein interactions in the bacteriorhodopsin purple membrane.
  Annu Rev Biophys Biomol Struct, 32, 285-310.  
12829500 M.T.Facciotti, V.S.Cheung, D.Nguyen, S.Rouhani, and R.M.Glaeser (2003).
Crystal structure of the bromide-bound D85S mutant of bacteriorhodopsin: principles of ion pumping.
  Biophys J, 85, 451-458.
PDB code: 1mgy
12539259 S.Rouhani, M.T.Facciotti, G.Woodcock, V.Cheung, C.Cunningham, D.Nguyen, B.Rad, C.T.Lin, C.S.Lunde, and R.M.Glaeser (2002).
Crystallization of membrane proteins from media composed of connected-bilayer gels.
  Biopolymers, 66, 300-316.  
12496106 V.Cherezov, J.Clogston, Y.Misquitta, W.Abdel-Gawad, and M.Caffrey (2002).
Membrane protein crystallization in meso: lipid type-tailoring of the cubic phase.
  Biophys J, 83, 3393-3407.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer