|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
 |
|
|
 |
 |
 |
 |
Enzyme class:
|
 |
Chains A, B:
E.C.2.3.2.27
- RING-type E3 ubiquitin transferase.
|
|
 |
 |
 |
 |
 |
Reaction:
|
 |
S-ubiquitinyl-[E2 ubiquitin-conjugating enzyme]-L-cysteine + [acceptor protein]-L-lysine = [E2 ubiquitin-conjugating enzyme]-L-cysteine + N6- ubiquitinyl-[acceptor protein]-L-lysine
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Nat Struct Biol
8:833-837
(2001)
|
|
PubMed id:
|
|
|
|
|
| |
|
Structure of a BRCA1-BARD1 heterodimeric RING-RING complex.
|
|
P.S.Brzovic,
P.Rajagopal,
D.W.Hoyt,
M.C.King,
R.E.Klevit.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
The RING domain of the breast and ovarian cancer tumor suppressor BRCA1
interacts with multiple cognate proteins, including the RING protein BARD1.
Proper function of the BRCA1 RING domain is critical, as evidenced by the many
cancer-predisposing mutations found within this domain. We present the solution
structure of the heterodimer formed between the RING domains of BRCA1 and BARD1.
Comparison with the RING homodimer of the V(D)J recombination-activating protein
RAG1 reveals the structural diversity of complexes formed by interactions
between different RING domains. The BRCA1-BARD1 structure provides a model for
its ubiquitin ligase activity, illustrates how the BRCA1 RING domain can be
involved in associations with multiple protein partners and provides a framework
for understanding cancer-causing mutations at the molecular level.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 3.
Figure 3. Surface comparison and structural overlay of the BRCA1
and cCbl RING domains. a, Contact surface representation of
the BRCA1 -BARD1 heterodimer complex and the linker helix and
RING domain from the cCbl -UbcH7 complex14. The remainder of
cCbl is omitted for clarity. The position on cCbl of the UbcH7
binding groove is labeled. b, Overlay of the BRCA1 (dark gray)
and cCbl (light gray) RING domain secondary structural elements.
C atoms
from 37 structurally equivalent residues were aligned^31 with an
r.m.s. deviation of 1.58 Å. Side chains of cCbl residues (cyan)
that make van der Waals contacts with UbcH7 (Ile 383, Ala 385,
Cys 404, Ser 407, Trp 408, Pro 417 and Leu 418) and the
corresponding residues of BRCA1 (red) (Ile 26, Leu 28, Cys 47,
Lys 50, Leu 51, Pro 62 and Leu 63) are shown. c, Sequence
alignment of the BRCA1 and cCbl RING domains. cCbl RING residues
involved in binding UbcH7 are highlighted in cyan; the
corresponding residues of BRCA1 are highlighted in red. Zn2+
liganding residues are colored purple.
|
 |
Figure 4.
Figure 4. Stereo representation of the BRCA1 -BARD1 RING domain
heterodimer depicting the locations of mutations found within
the BRCA1 (gray) and BARD1 (blue) RING domains8. Sites of
known cancer-predisposing mutations (C24R, C39S/Y, C44F, C47G/F,
C61G and C64G/R/Y) are shown in red. Sites of mutations found as
single occurrences in breast and ovarian cancer patients (R7C,
V11A, I15T, M18T, I21V, I31M, T37V, L52F, L63F, L87V, I89T and
I90T) are shown in black. Two Zn2+-liganding residues, Cys 27 in
site I and His 41 in site II (green), have not yet been
identified as mutations in cancer patients. No mutations within
the RING domain of BARD1 have yet been discovered in cancer
patients.
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Macmillan Publishers Ltd:
Nat Struct Biol
(2001,
8,
833-837)
copyright 2001.
|
|
| |
Figures were
selected
by the author.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
H.Dou,
L.Buetow,
G.J.Sibbet,
K.Cameron,
and
D.T.Huang
(2012).
BIRC7-E2 ubiquitin conjugate structure reveals the mechanism of ubiquitin transfer by a RING dimer.
|
| |
Nat Struct Mol Biol,
19,
876-883.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Atipairin,
B.Canyuk,
and
A.Ratanaphan
(2011).
The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by the platinum-based anticancer drugs.
|
| |
Breast Cancer Res Treat,
126,
203-209.
|
 |
|
|
|
|
 |
A.Atipairin,
B.Canyuk,
and
A.Ratanaphan
(2011).
Substitution of aspartic acid with glutamic acid at position 67 of the BRCA1 RING domain retains ubiquitin ligase activity and zinc(II) binding with a reduced transition temperature.
|
| |
J Biol Inorg Chem,
16,
217-226.
|
 |
|
|
|
|
 |
A.Plechanovová,
E.G.Jaffray,
S.A.McMahon,
K.A.Johnson,
I.Navrátilová,
J.H.Naismith,
and
R.T.Hay
(2011).
Mechanism of ubiquitylation by dimeric RING ligase RNF4.
|
| |
Nat Struct Mol Biol,
18,
1052-1059.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.Atipairin,
B.Canyuk,
and
A.Ratanaphan
(2010).
Cisplatin affects the conformation of apo form, not holo form, of BRCA1 RING finger domain and confers thermal stability.
|
| |
Chem Biodivers,
7,
1949-1967.
|
 |
|
|
|
|
 |
A.C.Nelson,
and
J.T.Holt
(2010).
Impact of RING and BRCT domain mutations on BRCA1 protein stability, localization and recruitment to DNA damage.
|
| |
Radiat Res,
174,
1.
|
 |
|
|
|
|
 |
D.J.Ransburgh,
N.Chiba,
C.Ishioka,
A.E.Toland,
and
J.D.Parvin
(2010).
Identification of breast tumor mutations in BRCA1 that abolish its function in homologous DNA recombination.
|
| |
Cancer Res,
70,
988-995.
|
 |
|
|
|
|
 |
K.A.Nordquist,
Y.N.Dimitrova,
P.S.Brzovic,
W.B.Ridenour,
K.A.Munro,
S.E.Soss,
R.M.Caprioli,
R.E.Klevit,
and
W.J.Chazin
(2010).
Structural and functional characterization of the monomeric U-box domain from E4B.
|
| |
Biochemistry,
49,
347-355.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Konecny,
M.Vizvaryova,
K.Zavodna,
R.Behulova,
M.Gerykova Bujalkova,
T.Krivulcik,
F.Cisarik,
J.Kausitz,
and
E.Weismanova
(2010).
Identification of a novel mutations BRCA1*c.80 + 3del4 and BRCA2*c.6589delA in Slovak HBOC families.
|
| |
Breast Cancer Res Treat,
119,
233-237.
|
 |
|
|
|
|
 |
M.S.Huen,
S.M.Sy,
and
J.Chen
(2010).
BRCA1 and its toolbox for the maintenance of genome integrity.
|
| |
Nat Rev Mol Cell Biol,
11,
138-148.
|
 |
|
|
|
|
 |
P.J.O'Donovan,
and
D.M.Livingston
(2010).
BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair.
|
| |
Carcinogenesis,
31,
961-967.
|
 |
|
|
|
|
 |
Q.Cheng,
and
J.Chen
(2010).
Mechanism of p53 stabilization by ATM after DNA damage.
|
| |
Cell Cycle,
9,
472-478.
|
 |
|
|
|
|
 |
T.V.Hansen,
L.Jønson,
A.Albrechtsen,
A.Y.Steffensen,
E.Bergsten,
T.Myrhøj,
B.Ejlertsen,
and
F.C.Nielsen
(2010).
Identification of a novel BRCA1 nucleotide 4803delCC/c.4684delCC mutation and a nucleotide 249T>A/c.130T>A (p.Cys44Ser) mutation in two Greenlandic Inuit families: implications for genetic screening of Greenlandic Inuit families with high risk for breast and/or ovarian cancer.
|
| |
Breast Cancer Res Treat,
124,
259-264.
|
 |
|
|
|
|
 |
A.R.Venkitaraman
(2009).
Linking the cellular functions of BRCA genes to cancer pathogenesis and treatment.
|
| |
Annu Rev Pathol,
4,
461-487.
|
 |
|
|
|
|
 |
C.A.Corcoran,
J.Montalbano,
H.Sun,
Q.He,
Y.Huang,
and
M.S.Sheikh
(2009).
Identification and characterization of two novel isoforms of Pirh2 ubiquitin ligase that negatively regulate p53 independent of RING finger domains.
|
| |
J Biol Chem,
284,
21955-21970.
|
 |
|
|
|
|
 |
C.M.Carlile,
C.M.Pickart,
M.J.Matunis,
and
R.E.Cohen
(2009).
Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5.
|
| |
J Biol Chem,
284,
29326-29334.
|
 |
|
|
|
|
 |
D.E.Christensen,
and
R.E.Klevit
(2009).
Dynamic interactions of proteins in complex networks: identifying the complete set of interacting E2s for functional investigation of E3-dependent protein ubiquitination.
|
| |
FEBS J,
276,
5381-5389.
|
 |
|
|
|
|
 |
F.Diaz-Griffero,
X.R.Qin,
F.Hayashi,
T.Kigawa,
A.Finzi,
Z.Sarnak,
M.Lienlaf,
S.Yokoyama,
and
J.Sodroski
(2009).
A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction.
|
| |
J Virol,
83,
10737-10751.
|
 |
|
|
|
|
 |
K.Iwai,
and
F.Tokunaga
(2009).
Linear polyubiquitination: a new regulator of NF-kappaB activation.
|
| |
EMBO Rep,
10,
706-713.
|
 |
|
|
|
|
 |
O.Sénèque,
E.Bonnet,
F.L.Joumas,
and
J.M.Latour
(2009).
Cooperative metal binding and helical folding in model peptides of treble-clef zinc fingers.
|
| |
Chemistry,
15,
4798-4810.
|
 |
|
|
|
|
 |
T.Inagawa,
T.Yamada-Inagawa,
T.Eydmann,
I.S.Mian,
T.S.Wang,
and
J.Z.Dalgaard
(2009).
Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart.
|
| |
Proc Natl Acad Sci U S A,
106,
7927-7932.
|
 |
|
|
|
|
 |
T.Safra
(2009).
Hereditary ovarian cancer: biology, response to chemotherapy and prognosis.
|
| |
Womens Health (Lond Engl),
5,
543-553.
|
 |
|
|
|
|
 |
T.V.Hansen,
B.Ejlertsen,
A.Albrechtsen,
E.Bergsten,
P.Bjerregaard,
T.Hansen,
T.Myrhøj,
P.B.Nielsen,
V.Timmermans-Wielenga,
M.K.Andersen,
L.Jønson,
and
F.C.Nielsen
(2009).
A common Greenlandic Inuit BRCA1 RING domain founder mutation.
|
| |
Breast Cancer Res Treat,
115,
69-76.
|
 |
|
|
|
|
 |
A.Hewetson,
A.E.Wright-Pastusek,
R.A.Helmer,
K.A.Wesley,
and
B.S.Chilton
(2008).
Conservation of inter-protein binding sites in RUSH and RFBP, an ATP11B isoform.
|
| |
Mol Cell Endocrinol,
292,
79-86.
|
 |
|
|
|
|
 |
D.Fox,
I.Le Trong,
P.Rajagopal,
P.S.Brzovic,
R.E.Stenkamp,
and
R.E.Klevit
(2008).
Crystal structure of the BARD1 ankyrin repeat domain and its functional consequences.
|
| |
J Biol Chem,
283,
21179-21186.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.Linke,
P.D.Mace,
C.A.Smith,
D.L.Vaux,
J.Silke,
and
C.L.Day
(2008).
Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans.
|
| |
Cell Death Differ,
15,
841-848.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
L.Volpon,
M.J.Osborne,
and
K.L.Borden
(2008).
NMR assignment of the arenaviral protein Z from Lassa fever virus.
|
| |
Biomol NMR Assign,
2,
81-84.
|
 |
|
|
|
|
 |
M.D.Petroski
(2008).
The ubiquitin system, disease, and drug discovery.
|
| |
BMC Biochem,
9,
S7.
|
 |
|
|
|
|
 |
M.Ditzel,
M.Broemer,
T.Tenev,
C.Bolduc,
T.V.Lee,
K.T.Rigbolt,
R.Elliott,
M.Zvelebil,
B.Blagoev,
A.Bergmann,
and
P.Meier
(2008).
Inactivation of effector caspases through nondegradative polyubiquitylation.
|
| |
Mol Cell,
32,
540-553.
|
 |
|
|
|
|
 |
M.Lakshmanan,
U.Bughani,
S.Duraisamy,
M.Diwan,
S.Dastidar,
and
A.Ray
(2008).
Molecular targeting of E3 ligases--a therapeutic approach for cancer.
|
| |
Expert Opin Ther Targets,
12,
855-870.
|
 |
|
|
|
|
 |
M.Sarkar,
and
T.J.Magliery
(2008).
Re-engineering a split-GFP reassembly screen to examine RING-domain interactions between BARD1 and BRCA1 mutants observed in cancer patients.
|
| |
Mol Biosyst,
4,
599-605.
|
 |
|
|
|
|
 |
P.D.Mace,
K.Linke,
R.Feltham,
F.R.Schumacher,
C.A.Smith,
D.L.Vaux,
J.Silke,
and
C.L.Day
(2008).
Structures of the cIAP2 RING Domain Reveal Conformational Changes Associated with Ubiquitin-conjugating Enzyme (E2) Recruitment.
|
| |
J Biol Chem,
283,
31633-31640.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
R.A.Edwards,
M.S.Lee,
S.E.Tsutakawa,
R.S.Williams,
J.A.Tainer,
and
J.N.Glover
(2008).
The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50.
|
| |
Biochemistry,
47,
11446-11456.
|
 |
|
|
|
|
 |
R.A.Greenberg
(2008).
Recognition of DNA double strand breaks by the BRCA1 tumor suppressor network.
|
| |
Chromosoma,
117,
305-317.
|
 |
|
|
|
|
 |
R.Naseem,
and
M.Webb
(2008).
Analysis of the DNA binding activity of BRCA1 and its modulation by the tumour suppressor p53.
|
| |
PLoS ONE,
3,
e2336.
|
 |
|
|
|
|
 |
Y.Nominé,
M.V.Botuyan,
Z.Bajzer,
W.G.Owen,
A.J.Caride,
E.Wasielewski,
and
G.Mer
(2008).
Kinetic analysis of interaction of BRCA1 tandem breast cancer c-terminal domains with phosphorylated peptides reveals two binding conformations.
|
| |
Biochemistry,
47,
9866-9879.
|
 |
|
|
|
|
 |
B.Beenders,
P.L.Jones,
and
M.Bellini
(2007).
The tripartite motif of nuclear factor 7 is required for its association with transcriptional units.
|
| |
Mol Cell Biol,
27,
2615-2624.
|
 |
|
|
|
|
 |
B.T.Dye,
and
B.A.Schulman
(2007).
Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins.
|
| |
Annu Rev Biophys Biomol Struct,
36,
131-150.
|
 |
|
|
|
|
 |
D.E.Christensen,
P.S.Brzovic,
and
R.E.Klevit
(2007).
E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages.
|
| |
Nat Struct Mol Biol,
14,
941-948.
|
 |
|
|
|
|
 |
G.Nagaraju,
and
R.Scully
(2007).
Minding the gap: the underground functions of BRCA1 and BRCA2 at stalled replication forks.
|
| |
DNA Repair (Amst),
6,
1018-1031.
|
 |
|
|
|
|
 |
H.Sun,
J.D.Leverson,
and
T.Hunter
(2007).
Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins.
|
| |
EMBO J,
26,
4102-4112.
|
 |
|
|
|
|
 |
J.C.Tanny,
H.Erdjument-Bromage,
P.Tempst,
and
C.D.Allis
(2007).
Ubiquitylation of histone H2B controls RNA polymerase II transcription elongation independently of histone H3 methylation.
|
| |
Genes Dev,
21,
835-847.
|
 |
|
|
|
|
 |
K.Uzunova,
K.Göttsche,
M.Miteva,
S.R.Weisshaar,
C.Glanemann,
M.Schnellhardt,
M.Niessen,
H.Scheel,
K.Hofmann,
E.S.Johnson,
G.J.Praefcke,
and
R.J.Dohmen
(2007).
Ubiquitin-dependent proteolytic control of SUMO conjugates.
|
| |
J Biol Chem,
282,
34167-34175.
|
 |
|
|
|
|
 |
L.Li,
M.Cohen,
J.Wu,
M.H.Sow,
B.Nikolic,
P.Bischof,
and
I.Irminger-Finger
(2007).
Identification of BARD1 splice-isoforms involved in human trophoblast invasion.
|
| |
Int J Biochem Cell Biol,
39,
1659-1672.
|
 |
|
|
|
|
 |
M.Laufer,
S.V.Nandula,
A.P.Modi,
S.Wang,
M.Jasin,
V.V.Murty,
T.Ludwig,
and
R.Baer
(2007).
Structural requirements for the BARD1 tumor suppressor in chromosomal stability and homology-directed DNA repair.
|
| |
J Biol Chem,
282,
34325-34333.
|
 |
|
|
|
|
 |
M.V.Poyurovsky,
C.Priest,
A.Kentsis,
K.L.Borden,
Z.Q.Pan,
N.Pavletich,
and
C.Prives
(2007).
The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity.
|
| |
EMBO J,
26,
90.
|
 |
|
|
|
|
 |
P.Knipscheer,
and
T.K.Sixma
(2007).
Protein-protein interactions regulate Ubl conjugation.
|
| |
Curr Opin Struct Biol,
17,
665-673.
|
 |
|
|
|
|
 |
P.Mercier,
M.J.Lewis,
D.D.Hau,
L.F.Saltibus,
W.Xiao,
and
L.Spyracopoulos
(2007).
Structure, interactions, and dynamics of the RING domain from human TRAF6.
|
| |
Protein Sci,
16,
602-614.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.K.Singh,
S.Iyappan,
and
M.Scheffner
(2007).
Hetero-oligomerization with MdmX rescues the ubiquitin/Nedd8 ligase activity of RING finger mutants of Mdm2.
|
| |
J Biol Chem,
282,
10901-10907.
|
 |
|
|
|
|
 |
S.A.Beasley,
V.A.Hristova,
and
G.S.Shaw
(2007).
Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease.
|
| |
Proc Natl Acad Sci U S A,
104,
3095-3100.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
T.Ii,
J.Fung,
J.R.Mullen,
and
S.J.Brill
(2007).
The yeast Slx5-Slx8 DNA integrity complex displays ubiquitin ligase activity.
|
| |
Cell Cycle,
6,
2800-2809.
|
 |
|
|
|
|
 |
V.Notenboom,
R.G.Hibbert,
S.E.van Rossum-Fikkert,
J.V.Olsen,
M.Mann,
and
T.K.Sixma
(2007).
Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification.
|
| |
Nucleic Acids Res,
35,
5819-5830.
|
 |
|
|
|
|
 |
V.Tembe,
and
B.R.Henderson
(2007).
BARD1 translocation to mitochondria correlates with Bax oligomerization, loss of mitochondrial membrane potential, and apoptosis.
|
| |
J Biol Chem,
282,
20513-20522.
|
 |
|
|
|
|
 |
Y.Xie,
O.Kerscher,
M.B.Kroetz,
H.F.McConchie,
P.Sung,
and
M.Hochstrasser
(2007).
The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation.
|
| |
J Biol Chem,
282,
34176-34184.
|
 |
|
|
|
|
 |
Z.Liu,
J.Wu,
and
X.Yu
(2007).
CCDC98 targets BRCA1 to DNA damage sites.
|
| |
Nat Struct Mol Biol,
14,
716-720.
|
 |
|
|
|
|
 |
C.W.Vander Kooi,
M.D.Ohi,
J.A.Rosenberg,
M.L.Oldham,
M.E.Newcomer,
K.L.Gould,
and
W.J.Chazin
(2006).
The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases.
|
| |
Biochemistry,
45,
121-130.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.Buchwald,
P.van der Stoop,
O.Weichenrieder,
A.Perrakis,
M.van Lohuizen,
and
T.K.Sixma
(2006).
Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b.
|
| |
EMBO J,
25,
2465-2474.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Gronwald,
T.Huzarski,
B.Byrski,
K.Medrek,
J.Menkiszak,
A.N.Monteiro,
P.Sun,
J.Lubinski,
and
S.A.Narod
(2006).
Cancer risks in first degree relatives of BRCA1 mutation carriers: effects of mutation and proband disease status.
|
| |
J Med Genet,
43,
424-428.
|
 |
|
|
|
|
 |
J.N.Glover
(2006).
Insights into the molecular basis of human hereditary breast cancer from studies of the BRCA1 BRCT domain.
|
| |
Fam Cancer,
5,
89-93.
|
 |
|
|
|
|
 |
J.Polanowska,
J.S.Martin,
T.Garcia-Muse,
M.I.Petalcorin,
and
S.J.Boulton
(2006).
A conserved pathway to activate BRCA1-dependent ubiquitylation at DNA damage sites.
|
| |
EMBO J,
25,
2178-2188.
|
 |
|
|
|
|
 |
O.Ohlenschläger,
T.Seiboth,
H.Zengerling,
L.Briese,
A.Marchanka,
R.Ramachandran,
M.Baum,
M.Korbas,
W.Meyer-Klaucke,
M.Dürst,
and
M.Görlach
(2006).
Solution structure of the partially folded high-risk human papilloma virus 45 oncoprotein E7.
|
| |
Oncogene,
25,
5953-5959.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
S.V.Tavtigian,
A.M.Deffenbaugh,
L.Yin,
T.Judkins,
T.Scholl,
P.B.Samollow,
D.de Silva,
A.Zharkikh,
and
A.Thomas
(2006).
Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral.
|
| |
J Med Genet,
43,
295-305.
|
 |
|
|
|
|
 |
S.V.Tavtigian,
P.B.Samollow,
D.de Silva,
and
A.Thomas
(2006).
An analysis of unclassified missense substitutions in human BRCA1.
|
| |
Fam Cancer,
5,
77-88.
|
 |
|
|
|
|
 |
X.Yu,
S.Fu,
M.Lai,
R.Baer,
and
J.Chen
(2006).
BRCA1 ubiquitinates its phosphorylation-dependent binding partner CtIP.
|
| |
Genes Dev,
20,
1721-1726.
|
 |
|
|
|
|
 |
Z.Li,
R.Cao,
M.Wang,
M.P.Myers,
Y.Zhang,
and
R.M.Xu
(2006).
Structure of a Bmi-1-Ring1B polycomb group ubiquitin ligase complex.
|
| |
J Biol Chem,
281,
20643-20649.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.D.Choudhury,
H.Xu,
A.P.Modi,
W.Zhang,
T.Ludwig,
and
R.Baer
(2005).
Hyperphosphorylation of the BARD1 tumor suppressor in mitotic cells.
|
| |
J Biol Chem,
280,
24669-24679.
|
 |
|
|
|
|
 |
B.A.Schulman,
and
Z.J.Chen
(2005).
Protein ubiquitination: CHIPping away the symmetry.
|
| |
Mol Cell,
20,
653-655.
|
 |
|
|
|
|
 |
B.R.Henderson
(2005).
Regulation of BRCA1, BRCA2 and BARD1 intracellular trafficking.
|
| |
Bioessays,
27,
884-893.
|
 |
|
|
|
|
 |
C.Pettigrew,
N.Wayte,
P.K.Lovelock,
S.V.Tavtigian,
G.Chenevix-Trench,
A.B.Spurdle,
and
M.A.Brown
(2005).
Evolutionary conservation analysis increases the colocalization of predicted exonic splicing enhancers in the BRCA1 gene with missense sequence changes and in-frame deletions, but not polymorphisms.
|
| |
Breast Cancer Res,
7,
R929-R939.
|
 |
|
|
|
|
 |
J.Hennig,
L.Ottosson,
C.Andrésen,
L.Horvath,
V.K.Kuchroo,
K.Broo,
M.Wahren-Herlenius,
and
M.Sunnerhagen
(2005).
Structural organization and Zn2+-dependent subdomain interactions involving autoantigenic epitopes in the Ring-B-box-coiled-coil (RBCC) region of Ro52.
|
| |
J Biol Chem,
280,
33250-33261.
|
 |
|
|
|
|
 |
J.Silke,
T.Kratina,
D.Chu,
P.G.Ekert,
C.L.Day,
M.Pakusch,
D.C.Huang,
and
D.L.Vaux
(2005).
Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance.
|
| |
Proc Natl Acad Sci U S A,
102,
16182-16187.
|
 |
|
|
|
|
 |
L.M.Starita,
A.A.Horwitz,
M.C.Keogh,
C.Ishioka,
J.D.Parvin,
and
N.Chiba
(2005).
BRCA1/BARD1 ubiquitinate phosphorylated RNA polymerase II.
|
| |
J Biol Chem,
280,
24498-24505.
|
 |
|
|
|
|
 |
M.K.Sauer,
and
I.L.Andrulis
(2005).
Identification and characterization of missense alterations in the BRCA1 associated RING domain (BARD1) gene in breast and ovarian cancer.
|
| |
J Med Genet,
42,
633-638.
|
 |
|
|
|
|
 |
S.Gazdoiu,
K.Yamoah,
K.Wu,
C.R.Escalante,
I.Tappin,
V.Bermudez,
A.K.Aggarwal,
J.Hurwitz,
and
Z.Q.Pan
(2005).
Proximity-induced activation of human Cdc34 through heterologous dimerization.
|
| |
Proc Natl Acad Sci U S A,
102,
15053-15058.
|
 |
|
|
|
|
 |
S.Katoh,
Y.Tsunoda,
K.Murata,
E.Minami,
and
E.Katoh
(2005).
Active site residues and amino acid specificity of the ubiquitin carrier protein-binding RING-H2 finger domain.
|
| |
J Biol Chem,
280,
41015-41024.
|
 |
|
|
|
|
 |
V.N.Uversky,
C.J.Oldfield,
and
A.K.Dunker
(2005).
Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling.
|
| |
J Mol Recognit,
18,
343-384.
|
 |
|
|
|
|
 |
W.W.Au,
and
B.R.Henderson
(2005).
The BRCA1 RING and BRCT domains cooperate in targeting BRCA1 to ionizing radiation-induced nuclear foci.
|
| |
J Biol Chem,
280,
6993-7001.
|
 |
|
|
|
|
 |
A.D.Choudhury,
H.Xu,
and
R.Baer
(2004).
Ubiquitination and proteasomal degradation of the BRCA1 tumor suppressor is regulated during cell cycle progression.
|
| |
J Biol Chem,
279,
33909-33918.
|
 |
|
|
|
|
 |
D.A.Hill,
I.L.de la Serna,
T.M.Veal,
and
A.N.Imbalzano
(2004).
BRCA1 interacts with dominant negative SWI/SNF enzymes without affecting homologous recombination or radiation-induced gene activation of p21 or Mdm2.
|
| |
J Cell Biochem,
91,
987-998.
|
 |
|
|
|
|
 |
D.T.Huang,
D.W.Miller,
R.Mathew,
R.Cassell,
J.M.Holton,
M.F.Roussel,
and
B.A.Schulman
(2004).
A unique E1-E2 interaction required for optimal conjugation of the ubiquitin-like protein NEDD8.
|
| |
Nat Struct Mol Biol,
11,
927-935.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.N.Glover,
R.S.Williams,
and
M.S.Lee
(2004).
Interactions between BRCT repeats and phosphoproteins: tangled up in two.
|
| |
Trends Biochem Sci,
29,
579-585.
|
 |
|
|
|
|
 |
L.M.Starita,
Y.Machida,
S.Sankaran,
J.E.Elias,
K.Griffin,
B.P.Schlegel,
S.P.Gygi,
and
J.D.Parvin
(2004).
BRCA1-dependent ubiquitination of gamma-tubulin regulates centrosome number.
|
| |
Mol Cell Biol,
24,
8457-8466.
|
 |
|
|
|
|
 |
P.Andersen,
B.B.Kragelund,
A.N.Olsen,
F.H.Larsen,
N.H.Chua,
F.M.Poulsen,
and
K.Skriver
(2004).
Structure and biochemical function of a prototypical Arabidopsis U-box domain.
|
| |
J Biol Chem,
279,
40053-40061.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.De,
and
K.K.Rodgers
(2004).
Putting the pieces together: identification and characterization of structural domains in the V(D)J recombination protein RAG1.
|
| |
Immunol Rev,
200,
70-82.
|
 |
|
|
|
|
 |
S.J.Boulton,
J.S.Martin,
J.Polanowska,
D.E.Hill,
A.Gartner,
and
M.Vidal
(2004).
BRCA1/BARD1 orthologs required for DNA repair in Caenorhabditis elegans.
|
| |
Curr Biol,
14,
33-39.
|
 |
|
|
|
|
 |
S.J.Demarest,
S.Deechongkit,
H.J.Dyson,
R.M.Evans,
and
P.E.Wright
(2004).
Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein.
|
| |
Protein Sci,
13,
203-210.
|
 |
|
|
|
|
 |
E.E.McCarthy,
J.T.Celebi,
R.Baer,
and
T.Ludwig
(2003).
Loss of Bard1, the heterodimeric partner of the Brca1 tumor suppressor, results in early embryonic lethality and chromosomal instability.
|
| |
Mol Cell Biol,
23,
5056-5063.
|
 |
|
|
|
|
 |
E.M.Rosen,
S.Fan,
R.G.Pestell,
and
I.D.Goldberg
(2003).
BRCA1 gene in breast cancer.
|
| |
J Cell Physiol,
196,
19-41.
|
 |
|
|
|
|
 |
F.Wu-Baer,
K.Lagrazon,
W.Yuan,
and
R.Baer
(2003).
The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin.
|
| |
J Biol Chem,
278,
34743-34746.
|
 |
|
|
|
|
 |
J.M.Jones,
and
M.Gellert
(2003).
Autoubiquitylation of the V(D)J recombinase protein RAG1.
|
| |
Proc Natl Acad Sci U S A,
100,
15446-15451.
|
 |
|
|
|
|
 |
L.K.Linares,
A.Hengstermann,
A.Ciechanover,
S.Müller,
and
M.Scheffner
(2003).
HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53.
|
| |
Proc Natl Acad Sci U S A,
100,
12009-12014.
|
 |
|
|
|
|
 |
M.Benezra,
N.Chevallier,
D.J.Morrison,
T.K.MacLachlan,
W.S.El-Deiry,
and
J.D.Licht
(2003).
BRCA1 augments transcription by the NF-kappaB transcription factor by binding to the Rel domain of the p65/RelA subunit.
|
| |
J Biol Chem,
278,
26333-26341.
|
 |
|
|
|
|
 |
M.D.Ohi,
C.W.Vander Kooi,
J.A.Rosenberg,
W.J.Chazin,
and
K.L.Gould
(2003).
Structural insights into the U-box, a domain associated with multi-ubiquitination.
|
| |
Nat Struct Biol,
10,
250-255.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
N.Foray,
D.Marot,
A.Gabriel,
V.Randrianarison,
A.M.Carr,
M.Perricaudet,
A.Ashworth,
and
P.Jeggo
(2003).
A subset of ATM- and ATR-dependent phosphorylation events requires the BRCA1 protein.
|
| |
EMBO J,
22,
2860-2871.
|
 |
|
|
|
|
 |
P.S.Brzovic,
J.R.Keeffe,
H.Nishikawa,
K.Miyamoto,
D.Fox,
M.Fukuda,
T.Ohta,
and
R.Klevit
(2003).
Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex.
|
| |
Proc Natl Acad Sci U S A,
100,
5646-5651.
|
 |
|
|
|
|
 |
P.Y.Wu,
M.Hanlon,
M.Eddins,
C.Tsui,
R.S.Rogers,
J.P.Jensen,
M.J.Matunis,
A.M.Weissman,
A.M.Weisman,
A.M.Weissman,
C.Wolberger,
C.P.Wolberger,
and
C.M.Pickart
(2003).
A conserved catalytic residue in the ubiquitin-conjugating enzyme family.
|
| |
EMBO J,
22,
5241-5250.
|
 |
|
|
|
|
 |
R.S.Williams,
and
J.N.Glover
(2003).
Structural consequences of a cancer-causing BRCA1-BRCT missense mutation.
|
| |
J Biol Chem,
278,
2630-2635.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.Lafarge,
and
M.H.Montané
(2003).
Characterization of Arabidopsis thaliana ortholog of the human breast cancer susceptibility gene 1: AtBRCA1, strongly induced by gamma rays.
|
| |
Nucleic Acids Res,
31,
1148-1155.
|
 |
|
|
|
|
 |
U.K.Westermark,
M.Reyngold,
A.B.Olshen,
R.Baer,
M.Jasin,
and
M.E.Moynahan
(2003).
BARD1 participates with BRCA1 in homology-directed repair of chromosome breaks.
|
| |
Mol Cell Biol,
23,
7926-7936.
|
 |
|
|
|
|
 |
Y.Dong,
M.A.Hakimi,
X.Chen,
E.Kumaraswamy,
N.S.Cooch,
A.K.Godwin,
and
R.Shiekhattar
(2003).
Regulation of BRCC, a holoenzyme complex containing BRCA1 and BRCA2, by a signalosome-like subunit and its role in DNA repair.
|
| |
Mol Cell,
12,
1087-1099.
|
 |
|
|
|
|
 |
Y.Xia,
G.M.Pao,
H.W.Chen,
I.M.Verma,
and
T.Hunter
(2003).
Enhancement of BRCA1 E3 ubiquitin ligase activity through direct interaction with the BARD1 protein.
|
| |
J Biol Chem,
278,
5255-5263.
|
 |
|
|
|
|
 |
A.Chen,
F.E.Kleiman,
J.L.Manley,
T.Ouchi,
and
Z.Q.Pan
(2002).
Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase.
|
| |
J Biol Chem,
277,
22085-22092.
|
 |
|
|
|
|
 |
A.Kentsis,
R.E.Gordon,
and
K.L.Borden
(2002).
Self-assembly properties of a model RING domain.
|
| |
Proc Natl Acad Sci U S A,
99,
667-672.
|
 |
|
|
|
|
 |
A.Kentsis,
R.E.Gordon,
and
K.L.Borden
(2002).
Control of biochemical reactions through supramolecular RING domain self-assembly.
|
| |
Proc Natl Acad Sci U S A,
99,
15404-15409.
|
 |
|
|
|
|
 |
A.R.Venkitaraman
(2002).
Cancer susceptibility and the functions of BRCA1 and BRCA2.
|
| |
Cell,
108,
171-182.
|
 |
|
|
|
|
 |
C.Yi,
H.Wang,
N.Wei,
and
X.W.Deng
(2002).
An initial biochemical and cell biological characterization of the mammalian homologue of a central plant developmental switch, COP1.
|
| |
BMC Cell Biol,
3,
30.
|
 |
|
|
|
|
 |
D.C.Daniel
(2002).
Highlight: BRCA1 and BRCA2 proteins in breast cancer.
|
| |
Microsc Res Tech,
59,
68-83.
|
 |
|
|
|
|
 |
D.L.Mallery,
C.J.Vandenberg,
and
K.Hiom
(2002).
Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains.
|
| |
EMBO J,
21,
6755-6762.
|
 |
|
|
|
|
 |
J.C.Badciong,
and
A.L.Haas
(2002).
MdmX is a RING finger ubiquitin ligase capable of synergistically enhancing Mdm2 ubiquitination.
|
| |
J Biol Chem,
277,
49668-49675.
|
 |
|
|
|
|
 |
J.R.Morris,
N.H.Keep,
and
E.Solomon
(2002).
Identification of residues required for the interaction of BARD1 with BRCA1.
|
| |
J Biol Chem,
277,
9382-9386.
|
 |
|
|
|
|
 |
M.Fabbro,
J.A.Rodriguez,
R.Baer,
and
B.R.Henderson
(2002).
BARD1 induces BRCA1 intranuclear foci formation by increasing RING-dependent BRCA1 nuclear import and inhibiting BRCA1 nuclear export.
|
| |
J Biol Chem,
277,
21315-21324.
|
 |
|
|
|
|
 |
N.Foray,
D.Marot,
V.Randrianarison,
N.D.Venezia,
D.Picard,
M.Perricaudet,
V.Favaudon,
and
P.Jeggo
(2002).
Constitutive association of BRCA1 and c-Abl and its ATM-dependent disruption after irradiation.
|
| |
Mol Cell Biol,
22,
4020-4032.
|
 |
|
|
|
|
 |
R.Baer
(2001).
With the ends in sight: images from the BRCA1 tumor suppressor.
|
| |
Nat Struct Biol,
8,
822-824.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |