spacer
spacer

PDBsum entry 1hc4

Go to PDB code: 
protein metals links
Oxygen transport PDB id
1hc4

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
634 a.a. *
Metals
_CU ×2
Waters ×186
* Residue conservation analysis
Superseded by: 1hc1
PDB id:
1hc4
Name: Oxygen transport
Title: Crystal structure of hexameric haemocyanin from panulirus interruptus refined at 3.2 angstroms resolution
Structure: Arthropodan hemocyanin. Chain: a. Engineered: yes
Source: Panulirus interruptus. California spiny lobster
Biol. unit: Hexamer (from PQS)
Resolution:
3.20Å     R-factor:   0.201    
Authors: A.Volbeda,W.G.J.Hol
Key ref: A.Volbeda and W.G.Hol (1989). Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution. J Mol Biol, 209, 249-279. PubMed id: 2585484
Date:
15-May-91     Release date:   31-Jan-94    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P04254  (HCYA_PANIN) -  Hemocyanin A chain from Panulirus interruptus
Seq:
Struc:
 
Seq:
Struc:
657 a.a.
634 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 

 
J Mol Biol 209:249-279 (1989)
PubMed id: 2585484  
 
 
Crystal structure of hexameric haemocyanin from Panulirus interruptus refined at 3.2 A resolution.
A.Volbeda, W.G.Hol.
 
  ABSTRACT  
 
The use of non-crystallographic symmetry restraints in the refinement of the haemocyanin hexamer from Panulirus interruptus at 3.2 A resolution has resulted in a final model with a very reasonable geometry and a crystallographic R-factor of 20.1%, using 59,193 observed structure factor amplitudes between 8.0 and 3.2 A. The mean co-ordinate error is approximately 0.35 A. The six subunits appear to be related by symmetry operations that differ slightly from 32 point group symmetry. The six subunits have essentially maintained the same structure. The hexamer, with point group 32, is best described as a trimer of "tight dimers". The contacts between the subunits in such a dimer are more numerous, and better conserved during evolution than contacts in a trimer. The interface of a tight dimer is separated by an internal cavity into two "contact areas". The contact area nearest to the centre of the hexamer is most extensive and consists mainly of residues that are quite conserved among arthropodan haemocyanins. All these residues are provided by the second domain of each subunit. Hence, this second domain may play a crucial role in the allosteric functioning of this oxygen transport protein. The dinuclear copper oxygen-binding site resides in the centre of domain 2. This oxygen-binding centre is not fully accessible from the solvent. Three large cavities occur, however, within each subunit at the interfaces of the three domains. All three cavities contain ordered water molecules, and two of them are accessible from the surrounding solvent. These cavities may play a role in facilitating fast movement of dioxygen towards the binding site, which is situated in a highly conserved, rather hydrophobic core. A detailed definition of the geometry of the copper site is, of course, not possible at the limited resolution of 3.2 A. Nevertheless, it is possible to conclude that each copper is co-ordinated by two, more or less tightly bound, histidine ligands and one more distant histidine residue. The six histidine residues utilize their N epsilon atoms for copper co-ordination, while their N delta atoms are engaged in hydrogen bonds with conserved residues or water molecules. The two distant histidine ligands are located in apical positions and are on opposite sides with respect to the plane approximately defined by the four more tightly bound histidine ligands and the two copper ions. The copper-to-copper distance is 3.5 to 3.6 A in four of the subunits, but this distance deviates considerably in two others.(ABSTRACT TRUNCATED AT 400 WORDS)
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
  20396590 A.de la Lande, J.Maddaluno, O.Parisel, T.A.Darden, and J.P.Piquemal (2010).
Study of the docking of competitive inhibitors at a model of tyrosinase active site: insights from joint broken-symmetry/Spin-Flip DFT computations and ELF topological analysis.
  Interdiscip Sci, 2, 3.  
20640429 S.Scherbaum, B.Ertas, W.Gebauer, and T.Burmester (2010).
Characterization of hemocyanin from the peacock mantis shrimp Odontodactylus scyllarus (Malacostraca: Hoplocarida).
  J Comp Physiol B, 180, 1235-1245.  
19346471 J.Yoon, S.Fujii, and E.I.Solomon (2009).
Geometric and electronic structure differences between the type 3 copper sites of the multicopper oxidases and hemocyanin/tyrosinase.
  Proc Natl Acad Sci U S A, 106, 6585-6590.  
19358695 K.S.Ryu, J.O.Lee, T.H.Kwon, H.H.Choi, H.S.Park, S.K.Hwang, Z.W.Lee, K.B.Lee, Y.H.Han, Y.S.Choi, Y.H.Jeon, C.Cheong, and S.Kim (2009).
The presence of monoglucosylated N196-glycan is important for the structural stability of storage protein, arylphorin.
  Biochem J, 421, 87-96.
PDB code: 3gwj
19320761 V.Amore, M.Belardinelli, L.Guerra, F.Buonocore, A.M.Fausto, N.Ubero-Pascal, and R.Fochetti (2009).
Do all stoneflies nymphs have respiratory proteins? Further data on the presence of hemocyanin in the larval stages of plecoptera species.
  Insect Mol Biol, 18, 203-211.  
19805072 Y.Li, Y.Wang, H.Jiang, and J.Deng (2009).
Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes.
  Proc Natl Acad Sci U S A, 106, 17002-17006.
PDB code: 3hhs
18369492 E.Mijangos, J.Reedijk, and L.Gasque (2008).
Copper(ii) complexes of a polydentate imidazole-based ligand. pH effect on magnetic coupling and catecholase activity.
  Dalton Trans, (), 1857-1863.  
18190182 K.H.Marti, I.M.Ondík, G.Moritz, and M.Reiher (2008).
Density matrix renormalization group calculations on relative energies of transition metal complexes and clusters.
  J Chem Phys, 128, 014104.  
18725416 S.Hirota, T.Kawahara, M.Beltramini, P.Di Muro, R.S.Magliozzo, J.Peisach, L.S.Powers, N.Tanaka, S.Nagao, and L.Bubacco (2008).
Molecular basis of the bohr effect in arthropod hemocyanin.
  J Biol Chem, 283, 31941-31948.  
17225061 C.Singleton, and N.E.Le Brun (2007).
Atx1-like chaperones and their cognate P-type ATPases: copper-binding and transfer.
  Biometals, 20, 275-289.  
16964505 K.Born, P.Comba, A.Daubinet, A.Fuchs, and H.Wadepohl (2007).
Catecholase activity of dicopper(II)-bispidine complexes: stabilities and structures of intermediates, kinetics and reaction mechanism.
  J Biol Inorg Chem, 12, 36-48.  
17605157 S.Parvez, M.Kang, H.S.Chung, and H.Bae (2007).
Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries.
  Phytother Res, 21, 805-816.  
17617709 Y.Kawamura-Konishi, M.Tsuji, S.Hatana, M.Asanuma, D.Kakuta, T.Kawano, E.B.Mukouyama, H.Goto, and H.Suzuki (2007).
Purification, characterization, and molecular cloning of tyrosinase from Pholiota nameko.
  Biosci Biotechnol Biochem, 71, 1752-1760.  
16927257 A.W.Tepper, L.Bubacco, and G.W.Canters (2006).
Paramagnetic properties of the halide-bound derivatives of oxidised tyrosinase investigated by 1H NMR spectroscopy.
  Chemistry, 12, 7668-7675.  
16936929 I.A.Koval, P.Gamez, C.Belle, K.Selmeczi, and J.Reedijk (2006).
Synthetic models of the active site of catechol oxidase: mechanistic studies.
  Chem Soc Rev, 35, 814-840.  
16830147 P.E.Siegbahn (2006).
The performance of hybrid DFT for mechanisms involving transition metal complexes in enzymes.
  J Biol Inorg Chem, 11, 695-701.  
17115256 R.Fochetti, M.Belardinelli, L.Guerra, F.Buonocore, A.M.Fausto, and C.Caporale (2006).
Cloning and structural analysis of a haemocyanin from the Stonefly Perla grandis.
  Protein J, 25, 443-454.  
16436386 Y.Matoba, T.Kumagai, A.Yamamoto, H.Yoshitsu, and M.Sugiyama (2006).
Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis.
  J Biol Chem, 281, 8981-8990.
PDB codes: 1wx2 1wx3 1wx4 1wx5 1wxc 2ahk 2ahl 2zmx
16208496 I.A.Koval, C.Belle, K.Selmeczi, C.Philouze, E.Saint-Aman, A.M.Schuitema, P.Gamez, J.L.Pierre, and J.Reedijk (2005).
Catecholase activity of a mu-hydroxodicopper(II) macrocyclic complex: structures, intermediates and reaction mechanism.
  J Biol Inorg Chem, 10, 739-750.  
15819896 M.Beltramini, N.Colangelo, F.Giomi, L.Bubacco, P.Di Muro, N.Hellmann, E.Jaenicke, and H.Decker (2005).
Quaternary structure and functional properties of Penaeus monodon hemocyanin.
  FEBS J, 272, 2060-2075.  
15854824 S.Shleev, J.Tkac, A.Christenson, T.Ruzgas, A.I.Yaropolov, J.W.Whittaker, and L.Gorton (2005).
Direct electron transfer between copper-containing proteins and electrodes.
  Biosens Bioelectron, 20, 2517-2554.  
16234934 V.S.Sprakel, M.C.Feiters, W.Meyer-Klaucke, M.Klopstra, J.Brinksma, B.L.Feringa, K.D.Karlin, and R.J.Nolte (2005).
Oxygen binding and activation by the complexes of PY2- and TPA-appended diphenylglycoluril receptors with copper and other metals.
  Dalton Trans, (), 3522-3534.  
14760736 E.Jaenicke, and H.Decker (2004).
Functional changes in the family of type 3 copper proteins during evolution.
  Chembiochem, 5, 163-169.  
15478462 F.J.Stevens (2004).
Hypothetical structure of human serum amyloid A protein.
  Amyloid, 11, 71-80.  
14507729 F.Spinozzi, E.Maccioni, C.V.Teixeira, H.Amenitsch, R.Favilla, M.Goldoni, P.Di Muro, B.Salvato, P.Mariani, and M.Beltramini (2003).
Synchrotron SAXS studies on the structural stability of Carcinus aestuarii hemocyanin in solution.
  Biophys J, 85, 2661-2672.  
12473668 L.Bubacco, M.Van Gastel, E.J.Groenen, E.Vijgenboom, and G.W.Canters (2003).
Spectroscopic characterization of the electronic changes in the active site of Streptomyces antibioticus tyrosinase upon binding of transition state analogue inhibitors.
  J Biol Chem, 278, 7381-7389.  
12048185 A.W.Tepper, L.Bubacco, and G.W.Canters (2002).
Structural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions.
  J Biol Chem, 277, 30436-30444.  
12023249 E.Borghi, P.L.Solari, M.Beltramini, L.Bubacco, P.Di Muro, and B.Salvato (2002).
Oxidized derivatives of Octopus vulgaris and Carcinus aestuarii hemocyanins at pH 7.5 and related models by x-ray absorption spectroscopy.
  Biophys J, 82, 3254-3268.  
12235154 G.Battaini, E.Monzani, L.Casella, E.Lonardi, A.W.Tepper, G.W.Canters, and L.Bubacco (2002).
Tyrosinase-catalyzed oxidation of fluorophenols.
  J Biol Chem, 277, 44606-44612.  
11451442 C.Gerdemann, C.Eicken, A.Magrini, H.E.Meyer, A.Rompel, F.Spener, and B.Krebs (2001).
Isozymes of Ipomoea batatas catechol oxidase differ in catalase-like activity.
  Biochim Biophys Acta, 1548, 94.  
11679737 M.Perbandt, V.Chandra, K.R.Rajashankar, K.Idakieva, K.Parvanova, W.Rypniewski, S.Stoeva, W.Voelter, N.Genov, and C.Betzel (2001).
Preliminary X-ray diffraction studies of the external functional unit RtH2-e from the Rapana thomasiana.
  Acta Crystallogr D Biol Crystallogr, 57, 1663-1665.  
11389601 S.Jaron, and N.J.Blackburn (2001).
Characterization of a half-apo derivative of peptidylglycine monooxygenase. Insight into the reactivity of each active site copper.
  Biochemistry, 40, 6867-6875.  
11106415 A.Molon, P.Di Muro, L.Bubacco, V.Vasilyev, B.Salvato, M.Beltramini, W.Conze, N.Hellmann, and H.Decker (2000).
Molecular heterogeneity of the hemocyanin isolated from the king crab Paralithodes camtschaticae.
  Eur J Biochem, 267, 7046-7057.  
10916160 H.Decker, and F.Tuczek (2000).
Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism.
  Trends Biochem Sci, 25, 392-397.  
10653810 J.G.Grossmann, S.A.Ali, A.Abbasi, Z.H.Zaidi, S.Stoeva, W.Voelter, and S.S.Hasnain (2000).
Low-resolution molecular structures of isolated functional units from arthropodan and molluscan hemocyanin.
  Biophys J, 78, 977-981.  
10712607 J.K.Holm, L.Hemmingsen, L.Bubacco, B.Salvato, and R.Bauer (2000).
Interaction and coordination geometries for Ag(I) in the two metal sites of hemocyanin.
  Eur J Biochem, 267, 1754-1760.  
10607672 C.Eicken, B.Krebs, and J.C.Sacchettini (1999).
Catechol oxidase - structure and activity.
  Curr Opin Struct Biol, 9, 677-683.  
  10422845 P.Fariselli, A.Bottoni, F.Bernardi, and R.Casadio (1999).
Quantum mechanical analysis of oxygenated and deoxygenated states of hemocyanin: theoretical clues for a plausible allosteric model of oxygen binding.
  Protein Sci, 8, 1546-1550.  
10563791 S.Jaron, and N.J.Blackburn (1999).
Does superoxide channel between the copper centers in peptidylglycine monooxygenase? A new mechanism based on carbon monoxide reactivity.
  Biochemistry, 38, 15086-15096.  
9760242 B.Salvato, M.Santamaria, M.Beltramini, G.Alzuet, and L.Casella (1998).
The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase activity.
  Biochemistry, 37, 14065-14077.  
9748264 H.Decker, and T.Rimke (1998).
Tarantula hemocyanin shows phenoloxidase activity.
  J Biol Chem, 273, 25889-25892.  
9846879 T.Klabunde, C.Eicken, J.C.Sacchettini, and B.Krebs (1998).
Crystal structure of a plant catechol oxidase containing a dicopper center.
  Nat Struct Biol, 5, 1084-1090.
PDB codes: 1bt1 1bt2 1bt3 1bug
9266714 G.Alzuet, L.Bubacco, L.Casella, G.P.Rocco, B.Salvato, and M.Beltramini (1997).
The binding of azide to copper-containing and cobalt-containing forms of hemocyanin from the mediterranean crab Carcinus aestuarii.
  Eur J Biochem, 247, 688-694.  
9020155 G.Durstewitz, and N.B.Terwilliger (1997).
Developmental changes in hemocyanin expression in the Dungeness crab, Cancer magister.
  J Biol Chem, 272, 4347-4350.  
9128742 H.C.Massey, J.Kejzlarová-Lepesant, R.L.Willis, A.B.Castleberry, and H.Benes (1997).
The Drosophila Lsp-1 beta gene. A structural and phylogenetic analysis.
  Eur J Biochem, 245, 199-207.  
9188702 L.J.Martins, C.P.Hill, and W.R.Ellis (1997).
Structures of wild-type chloromet and L103N hydroxomet Themiste zostericola myohemerythrins at 1.8 A resolution.
  Biochemistry, 36, 7044-7049.
PDB codes: 1a7d 1a7e
8939004 P.A.Jekel, B.Neuteboom, and J.J.Beintema (1996).
Primary structure of hemocyanin from Palinurus vulgaris.
  Comp Biochem Physiol B Biochem Mol Biol, 115, 243-246.  
8980632 P.A.Jekel, F.G.Perton, and J.J.Beintema (1996).
Dimerization of an antigenic peptide leads to strong interaction with its antibody.
  Biochim Biophys Acta, 1291, 195-198.  
8702866 S.Della Longa, I.Ascone, A.Bianconi, A.Bonfigli, A.C.Castellano, O.Zarivi, and M.Miranda (1996).
The dinuclear copper site structure of Agaricus bisporus tyrosinase in solution probed by X-ray absorption spectroscopy.
  J Biol Chem, 271, 21025-21030.  
8662023 T.Burmester, and K.Scheller (1996).
Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor.
  J Mol Evol, 42, 713-728.  
7588779 A.Buzy, J.Gagnon, J.Lamy, P.Thibault, E.Forest, and G.Hudry-Clergeon (1995).
Complete amino acid sequence of the Aa6 subunit of the scorpion Androctonus australis hemocyanin determined by Edman degradation and mass spectrometry.
  Eur J Biochem, 233, 93.  
  7542893 F.G.Perton, W.Baron, A.J.Scheffer, and J.J.Beintema (1995).
Production and characterization of monoclonal antibodies against Panulirus interruptus hemocyanin.
  Biol Chem Hoppe Seyler, 376, 243-247.  
7556177 M.Beltramini, L.Bubacco, L.Casella, G.Alzuet, M.Gullotti, and B.Salvato (1995).
The oxidation of hemocyanin. Kinetics, reaction mechanism and characterization of met-hemocyanin product.
  Eur J Biochem, 232, 98.  
7644494 T.Kawabata, Y.Yasuhara, M.Ochiai, S.Matsuura, and M.Ashida (1995).
Molecular cloning of insect pro-phenol oxidase: a copper-containing protein homologous to arthropod hemocyanin.
  Proc Natl Acad Sci U S A, 92, 7774-7778.  
8200340 F.de Haas, F.G.Perton, J.F.van Breemen, J.H.Dijkema, J.J.Beintema, and E.F.van Bruggen (1994).
Identification of two antibody-interaction sites on the surface of Panulirus interruptus hemocyanin.
  Eur J Biochem, 222, 155-161.  
7984626 K.A.Magnus, B.Hazes, H.Ton-That, C.Bonaventura, J.Bonaventura, and W.G.Hol (1994).
Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences.
  Proteins, 19, 302-309.
PDB code: 1oxy
8197143 R.Sterner, and H.Decker (1994).
Inversion of the Bohr effect upon oxygen binding to 24-meric tarantula hemocyanin.
  Proc Natl Acad Sci U S A, 91, 4835-4839.  
8312502 S.Della Longa, A.Bianconi, L.Palladino, B.Simonelli, A.Congiu Castellano, E.Borghi, M.Barteri, M.Beltramini, G.P.Rocco, and B.Salvato (1993).
An x-ray absorption near edge structure spectroscopy study of metal coordination in Co(II)-substituted Carcinus maenas hemocyanin.
  Biophys J, 65, 2680-2691.  
1557352 B.Hazes, and W.G.Hol (1992).
Comparison of the hemocyanin beta-barrel with other Greek key beta-barrels: possible importance of the "beta-zipper" in protein structure and folding.
  Proteins, 12, 278-298.  
1587275 B.Neuteboom, P.A.Jekel, and J.J.Beintema (1992).
Primary structure of hemocyanin subunit c from Panulirus interruptus.
  Eur J Biochem, 206, 243-249.  
1494026 J.Markl, T.Burmester, H.Decker, A.Savel-Niemann, J.R.Harris, M.Süling, U.Naumann, and K.Scheller (1992).
Quaternary and subunit structure of Calliphora arylphorin as deduced from electron microscopy, electrophoresis, and sequence similarities with arthropod hemocyanin.
  J Comp Physiol [B], 162, 665-680.  
1554739 M.Beltramini, L.Bubacco, B.Salvato, L.Casella, M.Gullotti, and S.Garofani (1992).
The aromatic circular dichroism spectrum as a probe for conformational changes in the active site environment of hemocyanins.
  Biochim Biophys Acta, 1120, 24-32.  
1367679 J.A.Tainer, V.A.Roberts, and E.D.Getzoff (1991).
Metal-binding sites in proteins.
  Curr Opin Biotechnol, 2, 582-591.  
1866430 K.A.Magnus, E.E.Lattman, A.Volbeda, and W.G.Hol (1991).
Hexamers of subunit II from Limulus hemocyanin (a 48-mer) have the same quaternary structure as whole Panulirus hemocyanin molecules.
  Proteins, 9, 240-247.  
2304914 K.I.Miller, E.Schabtach, and K.E.van Holde (1990).
Arrangement of subunits and domains within the Octopus dofleini hemocyanin molecule.
  Proc Natl Acad Sci U S A, 87, 1496-1500.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer