spacer
spacer

PDBsum entry 1evv

Go to PDB code: 
dna_rna ligands metals links
RNA PDB id
1evv

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
DNA/RNA
Ligands
SPM
Metals
_MG ×10
Waters ×220
PDB id:
1evv
Name: RNA
Title: Crystal structure of yeast phenylalanine transfer RNA at 2.0 a resolution
Structure: Phenylalanine transfer RNA. Chain: a
Source: Saccharomyces. Organism_taxid: 4930
Resolution:
2.00Å     R-factor:   0.227     R-free:   0.263
Authors: L.Jovine,S.Djordjevic,D.Rhodes
Key ref:
L.Jovine et al. (2000). The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals. J Mol Biol, 301, 401-414. PubMed id: 10926517 DOI: 10.1006/jmbi.2000.3950
Date:
20-Apr-00     Release date:   01-May-00    
 Headers
 References

DNA/RNA chain
  G-C-G-G-A-U-U-U-A-2MG-C-U-C-A-G-H2U-H2U-G-G-G-A-G-A-G-C-M2G-C-C-A-G-A-OMC-U-OM 76 bases

 

 
DOI no: 10.1006/jmbi.2000.3950 J Mol Biol 301:401-414 (2000)
PubMed id: 10926517  
 
 
The crystal structure of yeast phenylalanine tRNA at 2.0 A resolution: cleavage by Mg(2+) in 15-year old crystals.
L.Jovine, S.Djordjevic, D.Rhodes.
 
  ABSTRACT  
 
We have re-determined the crystal structure of yeast tRNA(Phe) to 2. 0 A resolution using 15 year old crystals. The accuracy of the new structure, due both to higher resolution data and formerly unavailable refinement methods, consolidates the previous structural information, but also reveals novel details. In particular, the water structure around the tightly bound Mg(2+) is now clearly resolved, and hence provides more accurate information on the geometry of the magnesium-binding sites and the role of water molecules in coordinating the metal ions to the tRNA. We have assigned a total of ten magnesium ions and identified a partly conserved geometry for high-affinity Mg(2+ )binding. In the electron density map there is also clear density for a spermine molecule binding in the major groove of the TPsiC arm and also contacting a symmetry-related tRNA molecule. Interestingly, we have also found that two specific regions of the tRNA in the crystals are partially cleaved. The sites of hydrolysis are within the D and anticodon loops in the vicinity of Mg(2+).
 
  Selected figure(s)  
 
Figure 2.
Figure 2. Gallery of triple and tertiary base-pairs in the three-dimensional structure of yeast tRNA^Phe. (a) Stick representation of triple base-pairs shown within their combined, sigmaa-weighted |2F[o] - F[c]| electron density map contoured at 1.0 s. Phosphate atoms are shown in magenta, carbon atoms in yellow, nitrogen atoms in blue and oxygen atoms in red. Nucleotide labels are colour coded according to the scheme in Figure 1(a). Mg2+ and water molecules are indicated by green and red spheres, respectively. For clarity, only hydrogen bonds between nucleotides are shown (broken green lines). (b) Stick representation of tertiary base-pairs shown within their combined, sigmaa-weighted |2F[o] - F[c]| electron density map contoured at 1.0 s. Conventions are as in (a).
Figure 3.
Figure 3. The four-strong Mg2+-binding sites in yeast tRNA^Phe. (a) Mg2+-binding site 1, (b) Mg2+-binding site 2, (c) Mg2+-binding site 3, (d) Mg2+-binding site 4. For each site, a stereo representation with combined, sigmaa-weighted |2F[o] - F[c]| electron density map contoured at 1.0 s is shown on the left; on the right, the same binding sites are shown colour-coded according to temperature factors. Conventions are as described in legend to Figure 2. Direct bonds ( slant 2.1 Å) involving Mg2+ ions are shown as continuous black lines, with the exception of the longer range contacts made by Mg2+ 1 (a), which are depicted as broken black lines. The bases of nucleotides G18 and G19 have been omitted for clarity from (c).
 
  The above figures are reprinted by permission from Elsevier: J Mol Biol (2000, 301, 401-414) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
19680239 A.G.Cook, N.Fukuhara, M.Jinek, and E.Conti (2009).
Structures of the tRNA export factor in the nuclear and cytosolic states.
  Nature, 461, 60-65.
PDB codes: 3ibv 3icq
19151083 C.Takemoto, L.L.Spremulli, L.A.Benkowski, T.Ueda, T.Yokogawa, and K.Watanabe (2009).
Unconventional decoding of the AUA codon as methionine by mitochondrial tRNAMet with the anticodon f5CAU as revealed with a mitochondrial in vitro translation system.
  Nucleic Acids Res, 37, 1616-1627.  
19243011 L.A.Kirsebom, and S.Trobro (2009).
RNase P RNA-mediated cleavage.
  IUBMB Life, 61, 189-200.  
18729108 B.Lippert (2008).
Ligand-pKa shifts through metals: potential relevance to ribozyme chemistry.
  Chem Biodivers, 5, 1455-1474.  
18835817 C.N.Jones, C.I.Jones, W.D.Graham, P.F.Agris, and L.L.Spremulli (2008).
A Disease-causing Point Mutation in Human Mitochondrial tRNAMet Results in tRNA Misfolding Leading to Defects in Translational Initiation and Elongation.
  J Biol Chem, 283, 34445-34456.  
18926923 I.Shcherbakova, S.Mitra, A.Laederach, and M.Brenowitz (2008).
Energy barriers, pathways, and dynamics during folding of large, multidomain RNAs.
  Curr Opin Chem Biol, 12, 655-666.  
18184583 N.Leulliot, M.Chaillet, D.Durand, N.Ulryck, K.Blondeau, and H.van Tilbeurgh (2008).
Structure of the yeast tRNA m7G methylation complex.
  Structure, 16, 52-61.
PDB codes: 2vdu 2vdv
18653533 P.Barraud, E.Schmitt, Y.Mechulam, F.Dardel, and C.Tisné (2008).
A unique conformation of the anticodon stem-loop is associated with the capacity of tRNAfMet to initiate protein synthesis.
  Nucleic Acids Res, 36, 4894-4901.
PDB codes: 3cw5 3cw6
19020518 W.Li, X.Agirrezabala, J.Lei, L.Bouakaz, J.L.Brunelle, R.F.Ortiz-Meoz, R.Green, S.Sanyal, M.Ehrenberg, and J.Frank (2008).
Recognition of aminoacyl-tRNA: a common molecular mechanism revealed by cryo-EM.
  EMBO J, 27, 3322-3331.
PDB codes: 3ep2 3eq3 3eq4
17401565 X.Wang, G.Kapral, L.Murray, D.Richardson, J.Richardson, and J.Snoeyink (2008).
RNABC: forward kinematics to reduce all-atom steric clashes in RNA backbone.
  J Math Biol, 56, 253-278.  
18435545 Y.Lin, and C.L.Kielkopf (2008).
X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines.
  Biochemistry, 47, 5503-5514.
PDB codes: 3cgp 3cgq 3cgr 3cgs
17764954 A.Korostelev, and H.F.Noller (2007).
The ribosome in focus: new structures bring new insights.
  Trends Biochem Sci, 32, 434-441.  
17693436 M.Kimoto, T.Mitsui, Y.Harada, A.Sato, S.Yokoyama, and I.Hirao (2007).
Fluorescent probing for RNA molecules by an unnatural base-pair system.
  Nucleic Acids Res, 35, 5360-5369.  
17931443 N.J.Baird, X.W.Fang, N.Srividya, T.Pan, and T.R.Sosnick (2007).
Folding of a universal ribozyme: the ribonuclease P RNA.
  Q Rev Biophys, 40, 113-161.  
17925437 W.Li, and J.Frank (2007).
Transfer RNA in the hybrid P/E state: correlating molecular dynamics simulations with cryo-EM data.
  Proc Natl Acad Sci U S A, 104, 16540-16545.  
17488812 Y.Bessho, R.Shibata, S.Sekine, K.Murayama, K.Higashijima, C.Hori-Takemoto, M.Shirouzu, S.Kuramitsu, and S.Yokoyama (2007).
Structural basis for functional mimicry of long-variable-arm tRNA by transfer-messenger RNA.
  Proc Natl Acad Sci U S A, 104, 8293-8298.
PDB codes: 1wjx 2czj
16962654 A.Korostelev, S.Trakhanov, M.Laurberg, and H.F.Noller (2006).
Crystal structure of a 70S ribosome-tRNA complex reveals functional interactions and rearrangements.
  Cell, 126, 1065-1077.
PDB codes: 1vsa 2ow8
16455492 K.B.Gromadski, T.Daviter, and M.V.Rodnina (2006).
A uniform response to mismatches in codon-anticodon complexes ensures ribosomal fidelity.
  Mol Cell, 21, 369-377.  
16959973 M.Selmer, C.M.Dunham, F.V.Murphy, A.Weixlbaumer, S.Petry, A.C.Kelley, J.R.Weir, and V.Ramakrishnan (2006).
Structure of the 70S ribosome complexed with mRNA and tRNA.
  Science, 313, 1935-1942.
PDB codes: 2j00 2j01 2j02 2j03
15861476 B.Knobloch, D.Suliga, A.Okruszek, and R.K.Sigel (2005).
Acid-base and metal-ion binding properties of the RNA dinucleotide uridylyl-(5'-->3')-[5']uridylate (pUpU3-).
  Chemistry, 11, 4163-4170.  
15869389 D.E.Draper, D.Grilley, and A.M.Soto (2005).
Ions and RNA folding.
  Annu Rev Biophys Biomol Struct, 34, 221-243.  
16126826 E.B.Brauns, and R.B.Dyer (2005).
Time-resolved infrared spectroscopy of RNA folding.
  Biophys J, 89, 3523-3530.  
15867194 S.Cuzic, and R.K.Hartmann (2005).
Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor.
  Nucleic Acids Res, 33, 2464-2474.  
14681588 A.L.Konevega, N.G.Soboleva, V.I.Makhno, Y.P.Semenkov, W.Wintermeyer, M.V.Rodnina, and V.I.Katunin (2004).
Purine bases at position 37 of tRNA stabilize codon-anticodon interaction in the ribosomal A site by stacking and Mg2+-dependent interactions.
  RNA, 10, 90.  
14970222 F.Xing, S.L.Hiley, T.R.Hughes, and E.M.Phizicky (2004).
The specificities of four yeast dihydrouridine synthases for cytoplasmic tRNAs.
  J Biol Chem, 279, 17850-17860.  
15210970 K.Hanawa-Suetsugu, S.Sekine, H.Sakai, C.Hori-Takemoto, T.Terada, S.Unzai, J.R.Tame, S.Kuramitsu, M.Shirouzu, and S.Yokoyama (2004).
Crystal structure of elongation factor P from Thermus thermophilus HB8.
  Proc Natl Acad Sci U S A, 101, 9595-9600.
PDB code: 1ueb
14704352 S.Fouace, C.Gaudin, S.Picard, S.Corvaisier, J.Renault, B.Carboni, and B.Felden (2004).
Polyamine derivatives as selective RNaseA mimics.
  Nucleic Acids Res, 32, 151-157.  
12837388 P.Auffinger, L.Bielecki, and E.Westhof (2003).
The Mg2+ binding sites of the 5S rRNA loop E motif as investigated by molecular dynamics simulations.
  Chem Biol, 10, 551-561.  
11980722 E.L.Christian, N.M.Kaye, and M.E.Harris (2002).
Evidence for a polynuclear metal ion binding site in the catalytic domain of ribonuclease P RNA.
  EMBO J, 21, 2253-2262.  
12409466 K.N.Nobles, C.S.Yarian, G.Liu, R.H.Guenther, and P.F.Agris (2002).
Highly conserved modified nucleosides influence Mg2+-dependent tRNA folding.
  Nucleic Acids Res, 30, 4751-4760.  
12364602 M.H.de Smit, A.P.Gultyaev, M.Hilge, H.H.Bink, S.Barends, B.Kraal, and C.W.Pleij (2002).
Structural variation and functional importance of a D-loop-T-loop interaction in valine-accepting tRNA-like structures of plant viral RNAs.
  Nucleic Acids Res, 30, 4232-4240.  
12003491 M.J.Serra, J.D.Baird, T.Dale, B.L.Fey, K.Retatagos, and E.Westhof (2002).
Effects of magnesium ions on the stabilization of RNA oligomers of defined structures.
  RNA, 8, 307-323.  
12364603 M.Olejniczak, Z.Gdaniec, A.Fischer, T.Grabarkiewicz, L.Bielecki, and R.W.Adamiak (2002).
The bulge region of HIV-1 TAR RNA binds metal ions in solution.
  Nucleic Acids Res, 30, 4241-4249.  
11919203 Q.Gong, Q.Guo, K.L.Tong, G.Zhu, J.T.Wong, and H.Xue (2002).
NMR analysis of bovine tRNATrp: conformation dependence of Mg2+ binding.
  J Biol Chem, 277, 20694-20701.  
12084911 X.W.Fang, P.Thiyagarajan, T.R.Sosnick, and T.Pan (2002).
The rate-limiting step in the folding of a large ribozyme without kinetic traps.
  Proc Natl Acad Sci U S A, 99, 8518-8523.  
11779511 B.Vestergaard, L.B.Van, G.R.Andersen, J.Nyborg, R.H.Buckingham, and M.Kjeldgaard (2001).
Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1.
  Mol Cell, 8, 1375-1382.
PDB code: 1gqe
11345434 C.Heide, S.Busch, R.Feltens, and R.K.Hartmann (2001).
Distinct modes of mature and precursor tRNA binding to Escherichia coli RNase P RNA revealed by NAIM analyses.
  RNA, 7, 553-564.  
11340196 J.M.Ogle, D.E.Brodersen, W.M.Clemons, M.J.Tarry, A.P.Carter, and V.Ramakrishnan (2001).
Recognition of cognate transfer RNA by the 30S ribosomal subunit.
  Science, 292, 897-902.
PDB codes: 1ibk 1ibl 1ibm
11891627 J.Sühnel (2001).
Beyond nucleic acid base pairs: from triads to heptads.
  Biopolymers, 61, 32-51.  
11286889 K.Juneau, E.Podell, D.J.Harrington, and T.R.Cech (2001).
Structural basis of the enhanced stability of a mutant ribozyme domain and a detailed view of RNA--solvent interactions.
  Structure, 9, 221-231.
PDB code: 1hr2
11027137 M.Sundaram, P.C.Durant, and D.R.Davis (2000).
Hypermodified nucleosides in the anticodon of tRNALys stabilize a canonical U-turn structure.
  Biochemistry, 39, 12575-12584.
PDB code: 1fl8
11754340 P.Auffinger, and E.Westhof (2000).
RNA solvation: a molecular dynamics simulation perspective.
  Biopolymers, 56, 266-274.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer