spacer
spacer

PDBsum entry 1ueb

Go to PDB code: 
protein Protein-protein interface(s) links
RNA binding protein PDB id
1ueb

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
184 a.a. *
Waters ×407
* Residue conservation analysis
PDB id:
1ueb
Name: RNA binding protein
Title: Crystal structure of translation elongation factor p from thermus thermophilus hb8
Structure: Elongation factor p. Chain: a, b. Synonym: ef-p, tt0860. Engineered: yes
Source: Thermus thermophilus. Organism_taxid: 274. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.65Å     R-factor:   0.213     R-free:   0.241
Authors: K.Hanawa-Suetsugu,S.Sekine,H.Sakai,C.Hori-Takemoto,T.Terada, S.Kuramitsu,M.Shirouzu,S.Yokoyama,Riken Structural Genomics/proteomics Initiative (Rsgi)
Key ref:
K.Hanawa-Suetsugu et al. (2004). Crystal structure of elongation factor P from Thermus thermophilus HB8. Proc Natl Acad Sci U S A, 101, 9595-9600. PubMed id: 15210970 DOI: 10.1073/pnas.0308667101
Date:
09-May-03     Release date:   25-May-04    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
Q76G20  (EFP_THET8) -  Elongation factor P from Thermus thermophilus (strain ATCC 27634 / DSM 579 / HB8)
Seq:
Struc:
184 a.a.
184 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 

 
DOI no: 10.1073/pnas.0308667101 Proc Natl Acad Sci U S A 101:9595-9600 (2004)
PubMed id: 15210970  
 
 
Crystal structure of elongation factor P from Thermus thermophilus HB8.
K.Hanawa-Suetsugu, S.Sekine, H.Sakai, C.Hori-Takemoto, T.Terada, S.Unzai, J.R.Tame, S.Kuramitsu, M.Shirouzu, S.Yokoyama.
 
  ABSTRACT  
 
Translation elongation factor P (EF-P) stimulates ribosomal peptidyltransferase activity. EF-P is conserved in bacteria and is essential for cell viability. Eukarya and Archaea have an EF-P homologue, eukaryotic initiation factor 5A (eIF-5A). In the present study, we determined the crystal structure of EF-P from Thermus thermophilus HB8 at a 1.65-A resolution. EF-P consists of three beta-barrel domains (I, II, and III), whereas eIF-5A has only two domains (N and C domains). Domain I of EF-P is topologically the same as the N domain of eIF-5A. On the other hand, EF-P domains II and III share the same topology as that of the eIF-5A C domain, indicating that domains II and III arose by duplication. Intriguingly, the N-terminal half of domain II and the C-terminal half of domain III of EF-P have sequence homologies to the N- and C-terminal halves, respectively, of the eIF-5A C domain. The three domains of EF-P are arranged in an "L" shape, with 65- and 53-A-long arms at an angle of 95 degrees, which is reminiscent of tRNA. Furthermore, most of the EF-P protein surface is negatively charged. Therefore, EF-P mimics the tRNA shape but uses domain topologies different from those of the known tRNA-mimicry translation factors. Domain I of EF-P has a conserved positive charge at its tip, like the eIF-5A N domain.
 
  Selected figure(s)  
 
Figure 3.
Fig. 3. Structure comparison of EF-P with tRNA and ribosome-binding proteins. (A and B) EF-P from T. thermophilus (PDB ID code 1UEB [PDB] ). (C) tRNA^Phe from Saccharomyces cerevisiae (PDB ID code 1EVV [PDB] ). (D) EF-G from T. thermophilus (PDB ID code 1EFG [PDB] ). (E) Ribosome recycling factor from E. coli (PDB code 1EK8 [PDB] ). (F) Release factor 2 from E. coli (PDB ID code 1GQE [PDB] ).
Figure 5.
Fig. 5. Structure comparison of EF-P and eIF-5A. (A) Superimposition of the ribbon diagrams of T. thermophilus EF-P (blue) and M. jannaschii eIF-5A (yellow). (B) Amino acid residues conserved in EF-Ps and eIF-5As color-coded on the surface of T. thermophilus EF-P.
 
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21451136 A.Henderson, and J.W.Hershey (2011).
Eukaryotic translation initiation factor (eIF) 5A stimulates protein synthesis in Saccharomyces cerevisiae.
  Proc Natl Acad Sci U S A, 108, 6415-6419.  
21131325 J.H.Park, C.A.Dias, S.B.Lee, S.R.Valentini, M.Sokabe, C.S.Fraser, and M.H.Park (2011).
Production of active recombinant eIF5A: reconstitution in E.coli of eukaryotic hypusine modification of eIF5A by its coexpression with modifying enzymes.
  Protein Eng Des Sel, 24, 301-309.  
21107886 J.Xu, B.Zhang, C.Jiang, and F.Ming (2011).
RceIF5A, encoding an eukaryotic translation initiation factor 5A in Rosa chinensis, can enhance thermotolerance, oxidative and osmotic stress resistance of Arabidopsis thaliana.
  Plant Mol Biol, 75, 167-178.  
21365687 S.Choi, and J.Choe (2011).
Crystal structure of elongation factor P from Pseudomonas aeruginosa at 1.75 å resolution.
  Proteins, 79, 1688-1693.  
19997760 M.H.Park, K.Nishimura, C.F.Zanelli, and S.R.Valentini (2010).
Functional significance of eIF5A and its hypusine modification in eukaryotes.
  Amino Acids, 38, 491-500.  
20729861 T.Yanagisawa, T.Sumida, R.Ishii, C.Takemoto, and S.Yokoyama (2010).
A paralog of lysyl-tRNA synthetase aminoacylates a conserved lysine residue in translation elongation factor P.
  Nat Struct Mol Biol, 17, 1136-1143.
PDB codes: 3a5y 3a5z
20670890 W.W.Navarre, S.B.Zou, H.Roy, J.L.Xie, A.Savchenko, A.Singer, E.Edvokimova, L.R.Prost, R.Kumar, M.Ibba, and F.C.Fang (2010).
PoxA, yjeK, and elongation factor P coordinately modulate virulence and drug resistance in Salmonella enterica.
  Mol Cell, 39, 209-221.
PDB code: 3g1z
20399190 Y.Matsumoto, Q.Xu, S.Miyazaki, C.Kaito, C.L.Farr, H.L.Axelrod, H.J.Chiu, H.E.Klock, M.W.Knuth, M.D.Miller, M.A.Elsliger, A.M.Deacon, A.Godzik, S.A.Lesley, K.Sekimizu, and I.A.Wilson (2010).
Structure of a virulence regulatory factor CvfB reveals a novel winged helix RNA binding module.
  Structure, 18, 537-547.
PDB code: 3go5
19833922 A.Liljas (2009).
Biochemistry. Leaps in translational elongation.
  Science, 326, 677-678.  
19696344 G.Blaha, R.E.Stanley, and T.A.Steitz (2009).
Formation of the first peptide bond: the structure of EF-P bound to the 70S ribosome.
  Science, 325, 966-970.
PDB codes: 3huw 3hux 3huy 3huz
19424157 P.Saini, D.E.Eyler, R.Green, and T.E.Dever (2009).
Hypusine-containing protein eIF5A promotes translation elongation.
  Nature, 459, 118-121.  
18341589 C.A.Dias, V.S.Cano, S.M.Rangel, L.H.Apponi, M.C.Frigieri, J.R.Muniz, W.Garcia, M.H.Park, R.C.Garratt, C.F.Zanelli, and S.R.Valentini (2008).
Structural modeling and mutational analysis of yeast eukaryotic translation initiation factor 5A reveal new critical residues and reinforce its involvement in protein synthesis.
  FEBS J, 275, 1874-1888.  
18201202 H.Aoki, J.Xu, A.Emili, J.G.Chosay, A.Golshani, and M.C.Ganoza (2008).
Interactions of elongation factor EF-P with the Escherichia coli ribosome.
  FEBS J, 275, 671-681.  
18836011 M.Dori-Bachash, B.Dassa, S.Pietrokovski, and E.Jurkevitch (2008).
Proteome-based comparative analyses of growth stages reveal new cell cycle-dependent functions in the predatory bacterium Bdellovibrio bacteriovorus.
  Appl Environ Microbiol, 74, 7152-7162.  
18067580 V.S.Cano, G.A.Jeon, H.E.Johansson, C.A.Henderson, J.H.Park, S.R.Valentini, J.W.Hershey, and M.H.Park (2008).
Mutational analyses of human eIF5A-1--identification of amino acid residues critical for eIF5A activity and hypusine modification.
  FEBS J, 275, 44-58.  
17578650 C.F.Zanelli, and S.R.Valentini (2007).
Is there a role for eIF5A in translation?
  Amino Acids, 33, 351-358.  
17476569 E.C.Wolff, K.R.Kang, Y.S.Kim, and M.H.Park (2007).
Posttranslational synthesis of hypusine: evolutionary progression and specificity of the hypusine modification.
  Amino Acids, 33, 341-350.  
17213197 K.R.Kang, Y.S.Kim, E.C.Wolff, and M.H.Park (2007).
Specificity of the deoxyhypusine hydroxylase-eukaryotic translation initiation factor (eIF5A) interaction: identification of amino acid residues of the enzyme required for binding of its substrate, deoxyhypusine-containing eIF5A.
  J Biol Chem, 282, 8300-8308.  
16371467 J.H.Park, L.Aravind, E.C.Wolff, J.Kaevel, Y.S.Kim, and M.H.Park (2006).
Molecular cloning, expression, and structural prediction of deoxyhypusine hydroxylase: a HEAT-repeat-containing metalloenzyme.
  Proc Natl Acad Sci U S A, 103, 51-56.  
16452303 M.H.Park (2006).
The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the eukaryotic translation initiation factor 5A (eIF5A).
  J Biochem, 139, 161-169.  
16533814 Y.S.Kim, K.R.Kang, E.C.Wolff, J.K.Bell, P.McPhie, and M.H.Park (2006).
Deoxyhypusine hydroxylase is a Fe(II)-dependent, HEAT-repeat enzyme. Identification of amino acid residues critical for Fe(II) binding and catalysis [corrected].
  J Biol Chem, 281, 13217-13225.  
16043503 H.Liang, and L.F.Landweber (2005).
Molecular mimicry: quantitative methods to study structural similarity between protein and RNA.
  RNA, 11, 1167-1172.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer