spacer
spacer

PDBsum entry 1es6

Go to PDB code: 
protein links
Viral protein PDB id
1es6

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
260 a.a.
Waters ×120
PDB id:
1es6
Name: Viral protein
Title: Crystal structure of the matrix protein of ebola virus
Structure: Matrix protein vp40. Chain: a. Engineered: yes. Mutation: yes
Source: Ebola virus sp.. Organism_taxid: 205488. Strain: zaire. Expressed in: escherichia coli. Expression_system_taxid: 562. Other_details: ebola virus RNA genome
Biol. unit: Dimer (from PQS)
Resolution:
2.00Å     R-factor:   0.220     R-free:   0.250
Authors: A.Dessen,V.Volchkov,O.Dolnik,H.-D.Klenk,W.Weissenhorn
Key ref:
A.Dessen et al. (2000). Crystal structure of the matrix protein VP40 from Ebola virus. EMBO J, 19, 4228-4236. PubMed id: 10944105 DOI: 10.1093/emboj/19.16.4228
Date:
07-Apr-00     Release date:   30-Aug-00    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Q77DJ6  (VP40_EBOZ5) -  Matrix protein VP40 from Zaire ebolavirus (strain Kikwit-95)
Seq:
Struc:
326 a.a.
260 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 1 residue position (black cross)

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1093/emboj/19.16.4228 EMBO J 19:4228-4236 (2000)
PubMed id: 10944105  
 
 
Crystal structure of the matrix protein VP40 from Ebola virus.
A.Dessen, V.Volchkov, O.Dolnik, H.D.Klenk, W.Weissenhorn.
 
  ABSTRACT  
 
Ebola virus maturation occurs at the plasma membrane of infected cells and involves the clustering of the viral matrix protein VP40 at the assembly site as well as its interaction with the lipid bilayer. Here we report the X-ray crystal structure of VP40 from Ebola virus at 2.0 A resolution. The crystal structure reveals that Ebola virus VP40 is topologically distinct from all other known viral matrix proteins, consisting of two domains with unique folds, connected by a flexible linker. The C-terminal domain, which is absolutely required for membrane binding, contains large hydrophobic patches that may be involved in the interaction with lipid bilayers. Likewise, a highly basic region is shared between the two domains. The crystal structure reveals how the molecule may be able to switch from a monomeric conformation to a hexameric form, as observed in vitro. Its implications for the assembly process are discussed.
 
  Selected figure(s)  
 
Figure 1.
Figure 1 Stereo view of the experimental map generated with MAD phases obtained from six selenium sites identified by SOLVE and subsequently solvent flattened. The map is contoured at the 1 level, and focuses on a conserved loop region in domain 2 connecting -strands 7 and 8.
Figure 4.
Figure 4 Interdomain interactions. (A) Close up of polar interactions between the N- and C-terminal domains. Residues involved in salt bridges and hydrogen bonds are shown. For clarity, the connection between residue 307 and 310 is shown as a grey dashed line. The loop connecting both domains is indicated with an arrow. (B) Surface representation of the N-terminal domain (residues 44–194) and (C) of the C-terminal domain (residues 201–321). Hydrophobic residues lining the interface on the N- and C-terminal domains are shown in green.
 
  The above figures are reprinted from an Open Access publication published by Macmillan Publishers Ltd: EMBO J (2000, 19, 4228-4236) copyright 2000.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20463076 T.Hoenen, N.Biedenkopf, F.Zielecki, S.Jung, A.Groseth, H.Feldmann, and S.Becker (2010).
Oligomerization of ebola virus VP40 is essential for particle morphogenesis and regulation of viral transcription.
  J Virol, 84, 7053-7063.  
20032189 Y.Liu, L.Cocka, A.Okumura, Y.A.Zhang, J.O.Sunyer, and R.N.Harty (2010).
Conserved motifs within Ebola and Marburg virus VP40 proteins are important for stability, localization, and subsequent budding of virus-like particles.
  J Virol, 84, 2294-2303.  
  20730024 Y.Liu, and R.N.Harty (2010).
Viral and host proteins that modulate filovirus budding.
  Future Virol, 5, 481-491.  
19237566 P.Neumann, D.Lieber, S.Meyer, P.Dautel, A.Kerth, I.Kraus, W.Garten, and M.T.Stubbs (2009).
Crystal structure of the Borna disease virus matrix protein (BDV-M) reveals ssRNA binding properties.
  Proc Natl Acad Sci U S A, 106, 3710-3715.
PDB code: 3f1j
19114059 R.N.Harty (2009).
No exit: targeting the budding process to inhibit filovirus replication.
  Antiviral Res, 81, 189-197.  
19251668 V.A.Money, H.K.McPhee, J.A.Mosely, J.M.Sanderson, and R.P.Yeo (2009).
Surface features of a Mononegavirales matrix protein indicate sites of membrane interaction.
  Proc Natl Acad Sci U S A, 106, 4441-4446.
PDB code: 2vqp
18063023 P.Ascenzi, A.Bocedi, J.Heptonstall, M.R.Capobianchi, A.Di Caro, E.Mastrangelo, M.Bolognesi, and G.Ippolito (2008).
Ebolavirus and Marburgvirus: insight the Filoviridae family.
  Mol Aspects Med, 29, 151-185.  
  18391421 R.Assenberg, O.Delmas, S.C.Graham, A.Verma, N.Berrow, D.I.Stuart, R.J.Owens, H.Bourhy, and J.M.Grimes (2008).
Expression, purification and crystallization of a lyssavirus matrix (M) protein.
  Acta Crystallogr Sect F Struct Biol Cryst Commun, 64, 258-262.  
  18329616 S.Yamayoshi, T.Noda, H.Ebihara, H.Goto, Y.Morikawa, I.S.Lukashevich, G.Neumann, H.Feldmann, and Y.Kawaoka (2008).
Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport.
  Cell Host Microbe, 3, 168-177.  
17940965 L.L.Lofts, M.S.Ibrahim, D.L.Negley, M.C.Hevey, and A.L.Schmaljohn (2007).
Genomic differences between guinea pig lethal and nonlethal Marburg virus variants.
  J Infect Dis, 196, S305-S312.  
17940959 L.S.Silvestri, G.Ruthel, G.Kallstrom, K.L.Warfield, D.L.Swenson, T.Nelle, P.L.Iversen, S.Bavari, and M.J.Aman (2007).
Involvement of vacuolar protein sorting pathway in Ebola virus release independent of TSG101 interaction.
  J Infect Dis, 196, S264-S270.  
17699576 S.E.McCarthy, R.F.Johnson, Y.A.Zhang, J.O.Sunyer, and R.N.Harty (2007).
Role for amino acids 212KLR214 of Ebola virus VP40 in assembly and budding.
  J Virol, 81, 11452-11460.  
15650213 T.Hoenen, V.Volchkov, L.Kolesnikova, E.Mittler, J.Timmins, M.Ottmann, O.Reynard, S.Becker, and W.Weissenhorn (2005).
VP40 octamers are essential for Ebola virus replication.
  J Virol, 79, 1898-1905.  
15108720 J.Timmins, R.W.Ruigrok, and W.Weissenhorn (2004).
Structural studies on the Ebola virus matrix protein VP40 indicate that matrix proteins of enveloped RNA viruses are analogues but not homologues.
  FEMS Microbiol Lett, 233, 179-186.  
14694131 S.Watanabe, T.Watanabe, T.Noda, A.Takada, H.Feldmann, L.D.Jasenosky, and Y.Kawaoka (2004).
Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics.
  J Virol, 78, 999.  
14673115 R.G.Panchal, G.Ruthel, T.A.Kenny, G.H.Kallstrom, D.Lane, S.S.Badie, L.Li, S.Bavari, and M.J.Aman (2003).
In vivo oligomerization and raft localization of Ebola virus protein VP40 during vesicular budding.
  Proc Natl Acad Sci U S A, 100, 15936-15941.  
12525613 Z.Han, H.Boshra, J.O.Sunyer, S.H.Zwiers, J.Paragas, and R.N.Harty (2003).
Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding.
  J Virol, 77, 1793-1800.  
12136159 I.Kraus, H.Scheffczik, M.Eickmann, S.Kiermayer, M.T.Stubbs, and W.Garten (2002).
Crystallization and preliminary X-ray analysis of the matrix protein of Borna disease virus.
  Acta Crystallogr D Biol Crystallogr, 58, 1371-1373.  
12065402 M.Gaudier, Y.Gaudin, and M.Knossow (2002).
Crystal structure of vesicular stomatitis virus matrix protein.
  EMBO J, 21, 2886-2892.
PDB code: 1lg7
11877482 S.Bavari, C.M.Bosio, E.Wiegand, G.Ruthel, A.B.Will, T.W.Geisbert, M.Hevey, C.Schmaljohn, A.Schmaljohn, and M.J.Aman (2002).
Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses.
  J Exp Med, 195, 593-602.  
12191476 Y.Huang, L.Xu, Y.Sun, and G.J.Nabel (2002).
The assembly of Ebola virus nucleocapsid requires virion-associated proteins 35 and 24 and posttranslational modification of nucleoprotein.
  Mol Cell, 10, 307-316.  
11333902 L.D.Jasenosky, G.Neumann, I.Lukashevich, and Y.Kawaoka (2001).
Ebola virus VP40-induced particle formation and association with the lipid bilayer.
  J Virol, 75, 5205-5214.  
11118208 S.Scianimanico, G.Schoehn, J.Timmins, R.H.Ruigrok, H.D.Klenk, and W.Weissenhorn (2000).
Membrane association induces a conformational change in the Ebola virus matrix protein.
  EMBO J, 19, 6732-6741.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer