 |
PDBsum entry 1ebo
|
|
|
|
 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
|
|
|
|
|
|
|
Viral protein
|
PDB id
|
|
|
|
1ebo
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
 |
Contents |
 |
|
|
|
|
|
|
|
|
|
* Residue conservation analysis
|
|
|
|
|
PDB id:
|
 |
|
 |
| Name: |
 |
Viral protein
|
 |
|
Title:
|
 |
Crystal structure of the ebola virus membrane-fusion subunit, gp2, from the envelope glycoprotein ectodomain
|
|
Structure:
|
 |
Ebola virus envelope protein chimera consisting of a fragment of gcn4 zipper cloned n-terminal to a fragment of gp2. Chain: a, b, c, d, e, f. Fragment: gcn4 is residue 3 - 32, gp2 is residue 51 - 133. Engineered: yes. Mutation: yes
|
|
Source:
|
 |
Ebola virus sp.. Organism_taxid: 205488. Expressed in: escherichia coli. Expression_system_taxid: 562
|
|
Biol. unit:
|
 |
Trimer (from PDB file)
|
|
Resolution:
|
 |
|
3.00Å
|
R-factor:
|
0.239
|
R-free:
|
0.256
|
|
|
Authors:
|
 |
W.Weissenhorn,A.Carfi,K.H.Lee,J.J.Skehel,D.C.Wiley
|
Key ref:
|
 |
W.Weissenhorn
et al.
(1998).
Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain.
Mol Cell,
2,
605-616.
PubMed id:
DOI:
|
 |
|
Date:
|
 |
|
03-Nov-98
|
Release date:
|
02-Jul-99
|
|
|
|
|
|
PROCHECK
|
|
|
|
|
Headers
|
 |
|
|
References
|
|
|
|
|
|
|
O11457
(VGP_EBOG4) -
Envelope glycoprotein from Zaire ebolavirus (strain Gabon-94)
|
|
|
|
Seq: Struc:
|
 |
 |
 |
676 a.a.
112 a.a.*
|
|
|
|
|
|
|
|
|
 |
 |
|
|
Key: |
 |
PfamA domain |
 |
 |
 |
Secondary structure |
 |
 |
CATH domain |
 |
|
*
PDB and UniProt seqs differ
at 28 residue positions (black
crosses)
|
|
|
|
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
|
|
| |
|
DOI no:
|
Mol Cell
2:605-616
(1998)
|
|
PubMed id:
|
|
|
|
|
| |
|
Crystal structure of the Ebola virus membrane fusion subunit, GP2, from the envelope glycoprotein ectodomain.
|
|
W.Weissenhorn,
A.Carfí,
K.H.Lee,
J.J.Skehel,
D.C.Wiley.
|
|
|
|
| |
ABSTRACT
|
|
|
| |
|
We have determined the structure of GP2 from the Ebola virus membrane fusion
glycoprotein by X-ray crystallography. The molecule contains a central
triple-stranded coiled coil followed by a disulfide-bonded loop homologous to an
immunosuppressive sequence in retroviral glycoproteins, which reverses the chain
direction and connects to an alpha helix packed antiparallel to the core
helices. The structure suggests that fusion peptides near the N termini form
disulfide-bonded loops at one end of the molecule and that the C-terminal
membrane anchors are at the same end. In this conformation, GP2 could both
bridge two membranes and facilitate their apposition to initiate membrane
fusion. We also find a heptad irregularity like that in low-pH-induced influenza
HA2 and a solvent ion trapped in a coiled coil like that in retroviral TMs.
|
|
|
|
|
| |
Selected figure(s)
|
|
|
| |
 |
 |
|
 |
|
 |
Figure 4.
Figure 4. Comparison of GP2 with the Structures of Viral
and Cellular Membrane Fusion Proteins(A) Recombinant Ebola Zaire
GP2.(B) Recombinant Mo-55 from the TM subunit of MoMuLv
([24]).(C) Low-pH-treated HA2 from influenza virus ([8]).(D)
Recombinant, proteolysis-resistant core of HIV-1 gp41
([70]).(E) Recombinant SIV gp41, NMR structure ([9]).(F)
Recombinant core coiled segments of the SNARES syntaxin 1-A
(blue), synaptobrevin-II (light blue), and SNAP-25B (yellow)
([63]). This figure was created with RIBBONS ( [11]).
|
 |
Figure 6.
Figure 6. Hypothetical Model of Some Steps in the Membrane
Fusion Mechanism(A) and (B) represent hypothetical intermediates
and are based on Figure 3 of [70] (see text). Fusion peptides
labeled F are colored red. GP2 transmembrane anchors are labeled
A. The GP2 outer layer α helices are colored light blue; the
N-terminal, core coiled coil is dark blue; disulfide bonds are
yellow. Ngp2 and Ngp1 label the proposed location of the N
termini of those polypeptide chains. The gray spheres represent
the receptor-binding domain of GP1. The picture also
incorporates suggestions that more than one trimer might be
involved in forming an initial fusion pore ( [22]) and that the
bilayers may be distorted with molecules entering at an angle (
[51 and 65]), which in some way results in distortions to the
membrane that favor membrane fusion (e.g. [17]).
|
 |
|
|
|
| |
The above figures are
reprinted
by permission from Cell Press:
Mol Cell
(1998,
2,
605-616)
copyright 1998.
|
|
| |
Figures were
selected
by an automated process.
|
|
|
|
|
 |
 |
|
 |
 |
 |
 |
 |
 |
 |
 |
 |
|
Literature references that cite this PDB file's key reference
|
|
 |
| |
PubMed id
|
 |
Reference
|
 |
|
|
|
 |
J.M.Dias,
A.I.Kuehne,
D.M.Abelson,
S.Bale,
A.C.Wong,
P.Halfmann,
M.A.Muhammad,
M.L.Fusco,
S.E.Zak,
E.Kang,
Y.Kawaoka,
K.Chandran,
J.M.Dye,
and
E.O.Saphire
(2011).
A shared structural solution for neutralizing ebolaviruses.
|
| |
Nat Struct Mol Biol,
18,
1424-1427.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
M.Caffrey
(2011).
HIV envelope: challenges and opportunities for development of entry inhibitors.
|
| |
Trends Microbiol,
19,
191-197.
|
 |
|
|
|
|
 |
A.C.Wong,
R.G.Sandesara,
N.Mulherkar,
S.P.Whelan,
and
K.Chandran
(2010).
A forward genetic strategy reveals destabilizing mutations in the Ebolavirus glycoprotein that alter its protease dependence during cell entry.
|
| |
J Virol,
84,
163-175.
|
 |
|
|
|
|
 |
D.Roymans,
H.L.De Bondt,
E.Arnoult,
P.Geluykens,
T.Gevers,
M.Van Ginderen,
N.Verheyen,
H.Kim,
R.Willebrords,
J.F.Bonfanti,
W.Bruinzeel,
M.D.Cummings,
H.van Vlijmen,
and
K.Andries
(2010).
Binding of a potent small-molecule inhibitor of six-helix bundle formation requires interactions with both heptad-repeats of the RSV fusion protein.
|
| |
Proc Natl Acad Sci U S A,
107,
308-313.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
G.H.Bird,
N.Madani,
A.F.Perry,
A.M.Princiotto,
J.G.Supko,
X.He,
E.Gavathiotis,
J.G.Sodroski,
and
L.D.Walensky
(2010).
Hydrocarbon double-stapling remedies the proteolytic instability of a lengthy peptide therapeutic.
|
| |
Proc Natl Acad Sci U S A,
107,
14093-14098.
|
 |
|
|
|
|
 |
J.York,
J.D.Berry,
U.Ströher,
Q.Li,
H.Feldmann,
M.Lu,
M.Trahey,
and
J.H.Nunberg
(2010).
An antibody directed against the fusion peptide of Junin virus envelope glycoprotein GPC inhibits pH-induced membrane fusion.
|
| |
J Virol,
84,
6119-6129.
|
 |
|
|
|
|
 |
K.Matsuno,
N.Kishida,
K.Usami,
M.Igarashi,
R.Yoshida,
E.Nakayama,
M.Shimojima,
H.Feldmann,
T.Irimura,
Y.Kawaoka,
and
A.Takada
(2010).
Different potential of C-type lectin-mediated entry between Marburg virus strains.
|
| |
J Virol,
84,
5140-5147.
|
 |
|
|
|
|
 |
S.E.Delos,
B.La,
A.Gilmartin,
and
J.M.White
(2010).
Studies of the "chain reversal regions" of the avian sarcoma/leukosis virus (ASLV) and ebolavirus fusion proteins: analogous residues are important, and a His residue unique to EnvA affects the pH dependence of ASLV entry.
|
| |
J Virol,
84,
5687-5694.
|
 |
|
|
|
|
 |
J.E.Lee,
and
E.O.Saphire
(2009).
Ebolavirus glycoprotein structure and mechanism of entry.
|
| |
Future Virol,
4,
621-635.
|
 |
|
|
|
|
 |
J.E.Lee,
and
E.O.Saphire
(2009).
Neutralizing ebolavirus: structural insights into the envelope glycoprotein and antibodies targeted against it.
|
| |
Curr Opin Struct Biol,
19,
408-417.
|
 |
|
|
|
|
 |
Q.Huang,
T.Korte,
P.S.Rachakonda,
E.W.Knapp,
and
A.Herrmann
(2009).
Energetics of the loop-to-helix transition leading to the coiled-coil structure of influenza virus hemagglutinin HA2 subunits.
|
| |
Proteins,
74,
291-303.
|
 |
|
|
|
|
 |
S.McReynolds,
S.Jiang,
L.Rong,
and
M.Caffrey
(2009).
Dynamics of SARS-coronavirus HR2 domain in the prefusion and transition states.
|
| |
J Magn Reson,
201,
218-221.
|
 |
|
|
|
|
 |
A.Mirsaliotis,
D.Lamb,
and
D.W.Brighty
(2008).
Nonhelical leash and alpha-helical structures determine the potency of a peptide antagonist of human T-cell leukemia virus entry.
|
| |
J Virol,
82,
4965-4973.
|
 |
|
|
|
|
 |
D.Lamb,
A.W.Schüttelkopf,
D.M.van Aalten,
and
D.W.Brighty
(2008).
Highly specific inhibition of leukaemia virus membrane fusion by interaction of peptide antagonists with a conserved region of the coiled coil of envelope.
|
| |
Retrovirology,
5,
70.
|
 |
|
|
|
|
 |
G.E.Nelson,
T.R.Wagenaar,
and
B.Moss
(2008).
A conserved sequence within the H2 subunit of the vaccinia virus entry/fusion complex is important for interaction with the A28 subunit and infectivity.
|
| |
J Virol,
82,
6244-6250.
|
 |
|
|
|
|
 |
G.Long,
X.Pan,
and
J.M.Vlak
(2008).
Conserved leucines in N-terminal heptad repeat HR1 of envelope fusion protein F of group II nucleopolyhedroviruses are important for correct processing and essential for fusogenicity.
|
| |
J Virol,
82,
2437-2447.
|
 |
|
|
|
|
 |
J.E.Lee,
M.L.Fusco,
A.J.Hessell,
W.B.Oswald,
D.R.Burton,
and
E.O.Saphire
(2008).
Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor.
|
| |
Nature,
454,
177-182.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.Salsman,
D.Top,
C.Barry,
and
R.Duncan
(2008).
A virus-encoded cell-cell fusion machine dependent on surrogate adhesins.
|
| |
PLoS Pathog,
4,
e1000016.
|
 |
|
|
|
|
 |
M.S.Diamond,
and
D.H.Fremont
(2008).
Ebola images emerge from the cave.
|
| |
Cell Host Microbe,
4,
87-89.
|
 |
|
|
|
|
 |
P.Ascenzi,
A.Bocedi,
J.Heptonstall,
M.R.Capobianchi,
A.Di Caro,
E.Mastrangelo,
M.Bolognesi,
and
G.Ippolito
(2008).
Ebolavirus and Marburgvirus: insight the Filoviridae family.
|
| |
Mol Aspects Med,
29,
151-185.
|
 |
|
|
|
|
 |
S.E.Delos,
M.B.Brecher,
Z.Chen,
D.C.Melder,
M.J.Federspiel,
and
J.M.White
(2008).
Cysteines flanking the internal fusion peptide are required for the avian sarcoma/leukosis virus glycoprotein to mediate the lipid mixing stage of fusion with high efficiency.
|
| |
J Virol,
82,
3131-3134.
|
 |
|
|
|
|
 |
W.M.Schneider,
H.Zheng,
M.L.Coté,
and
M.J.Roth
(2008).
The MuLV 4070A G541R Env mutation decreases the stability and alters the conformation of the TM ectodomain.
|
| |
Virology,
371,
165-174.
|
 |
|
|
|
|
 |
W.Shi,
Z.Qi,
C.Pan,
N.Xue,
A.K.Debnath,
J.Qie,
S.Jiang,
and
K.Liu
(2008).
Novel anti-HIV peptides containing multiple copies of artificially designed heptad repeat motifs.
|
| |
Biochem Biophys Res Commun,
374,
767-772.
|
 |
|
|
|
|
 |
Z.N.Li,
B.J.Lee,
W.A.Langley,
K.C.Bradley,
R.J.Russell,
and
D.A.Steinhauer
(2008).
Length requirements for membrane fusion of influenza virus hemagglutinin peptide linkers to transmembrane or fusion peptide domains.
|
| |
J Virol,
82,
6337-6348.
|
 |
|
|
|
|
 |
A.Reske,
G.Pollara,
C.Krummenacher,
B.M.Chain,
and
D.R.Katz
(2007).
Understanding HSV-1 entry glycoproteins.
|
| |
Rev Med Virol,
17,
205-215.
|
 |
|
|
|
|
 |
A.Sanchez
(2007).
Analysis of filovirus entry into vero e6 cells, using inhibitors of endocytosis, endosomal acidification, structural integrity, and cathepsin (B and L) activity.
|
| |
J Infect Dis,
196,
S251-S258.
|
 |
|
|
|
|
 |
D.R.Beniac,
S.L.Devarennes,
A.Andonov,
R.He,
and
T.F.Booth
(2007).
Conformational Reorganization of the SARS Coronavirus Spike Following Receptor Binding: Implications for Membrane Fusion.
|
| |
PLoS ONE,
2,
e1082.
|
 |
|
|
|
|
 |
K.L.Warfield,
D.L.Swenson,
G.G.Olinger,
W.V.Kalina,
M.Viard,
M.Aitichou,
X.Chi,
S.Ibrahim,
R.Blumenthal,
Y.Raviv,
S.Bavari,
and
M.J.Aman
(2007).
Ebola virus inactivation with preservation of antigenic and structural integrity by a photoinducible alkylating agent.
|
| |
J Infect Dis,
196,
S276-S283.
|
 |
|
|
|
|
 |
M.Mohamadzadeh,
L.Chen,
and
A.L.Schmaljohn
(2007).
How Ebola and Marburg viruses battle the immune system.
|
| |
Nat Rev Immunol,
7,
556-567.
|
 |
|
|
|
|
 |
M.S.Freitas,
L.P.Gaspar,
M.Lorenzoni,
F.C.Almeida,
L.W.Tinoco,
M.S.Almeida,
L.F.Maia,
L.Degrève,
A.P.Valente,
and
J.L.Silva
(2007).
Structure of the Ebola fusion peptide in a membrane-mimetic environment and the interaction with lipid rafts.
|
| |
J Biol Chem,
282,
27306-27314.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
R.A.Lamb,
and
T.S.Jardetzky
(2007).
Structural basis of viral invasion: lessons from paramyxovirus F.
|
| |
Curr Opin Struct Biol,
17,
427-436.
|
 |
|
|
|
|
 |
R.L.Kaletsky,
G.Simmons,
and
P.Bates
(2007).
Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity.
|
| |
J Virol,
81,
13378-13384.
|
 |
|
|
|
|
 |
S.Lee-Huang,
P.L.Huang,
D.Zhang,
J.W.Lee,
J.Bao,
Y.Sun,
Y.T.Chang,
J.Zhang,
and
P.L.Huang
(2007).
Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: Part I. fusion [corrected] inhibition.
|
| |
Biochem Biophys Res Commun,
354,
872-878.
|
 |
|
|
|
|
 |
X.Peng,
J.Pan,
R.Gong,
Y.Liu,
S.Kang,
H.Feng,
G.Qiu,
D.Guo,
P.Tien,
and
G.Xiao
(2007).
Functional characterization of syncytin-A, a newly murine endogenous virus envelope protein. Implication for its fusion mechanism.
|
| |
J Biol Chem,
282,
381-389.
|
 |
|
|
|
|
 |
Z.Han,
J.M.Licata,
J.Paragas,
and
R.N.Harty
(2007).
Permeabilization of the plasma membrane by Ebola virus GP2.
|
| |
Virus Genes,
34,
273-281.
|
 |
|
|
|
|
 |
A.Marzi,
A.Akhavan,
G.Simmons,
T.Gramberg,
H.Hofmann,
P.Bates,
V.R.Lingappa,
and
S.Pöhlmann
(2006).
The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR.
|
| |
J Virol,
80,
6305-6317.
|
 |
|
|
|
|
 |
G.Frey,
S.Rits-Volloch,
X.Q.Zhang,
R.T.Schooley,
B.Chen,
and
S.C.Harrison
(2006).
Small molecules that bind the inner core of gp41 and inhibit HIV envelope-mediated fusion.
|
| |
Proc Natl Acad Sci U S A,
103,
13938-13943.
|
 |
|
|
|
|
 |
J.Paragas,
and
T.W.Geisbert
(2006).
Development of treatment strategies to combat Ebola and Marburg viruses.
|
| |
Expert Rev Anti Infect Ther,
4,
67-76.
|
 |
|
|
|
|
 |
J.Philipp-Staheli,
T.Marquardt,
M.E.Thouless,
A.G.Bruce,
R.F.Grant,
C.C.Tsai,
and
T.M.Rose
(2006).
Genetic variability of the envelope gene of Type D simian retrovirus-2 (SRV-2) subtypes associated with SAIDS-related retroperitoneal fibromatosis in different macaque species.
|
| |
Virol J,
3,
11.
|
 |
|
|
|
|
 |
S.Hakansson-McReynolds,
S.Jiang,
L.Rong,
and
M.Caffrey
(2006).
Solution structure of the severe acute respiratory syndrome-coronavirus heptad repeat 2 domain in the prefusion state.
|
| |
J Biol Chem,
281,
11965-11971.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
S.M.Amberg,
R.C.Netter,
G.Simmons,
and
P.Bates
(2006).
Expanded tropism and altered activation of a retroviral glycoprotein resistant to an entry inhibitor peptide.
|
| |
J Virol,
80,
353-359.
|
 |
|
|
|
|
 |
S.Roche,
S.Bressanelli,
F.A.Rey,
and
Y.Gaudin
(2006).
Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G.
|
| |
Science,
313,
187-191.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
W.Ou,
and
J.Silver
(2006).
Stoichiometry of murine leukemia virus envelope protein-mediated fusion and its neutralization.
|
| |
J Virol,
80,
11982-11990.
|
 |
|
|
|
|
 |
B.Manicassamy,
J.Wang,
H.Jiang,
and
L.Rong
(2005).
Comprehensive analysis of ebola virus GP1 in viral entry.
|
| |
J Virol,
79,
4793-4805.
|
 |
|
|
|
|
 |
B.Sainz,
J.M.Rausch,
W.R.Gallaher,
R.F.Garry,
and
W.C.Wimley
(2005).
Identification and characterization of the putative fusion peptide of the severe acute respiratory syndrome-associated coronavirus spike protein.
|
| |
J Virol,
79,
7195-7206.
|
 |
|
|
|
|
 |
J.C.Burnett,
E.A.Henchal,
A.L.Schmaljohn,
and
S.Bavari
(2005).
The evolving field of biodefence: therapeutic developments and diagnostics.
|
| |
Nat Rev Drug Discov,
4,
281-297.
|
 |
|
|
|
|
 |
K.Chandran,
N.J.Sullivan,
U.Felbor,
S.P.Whelan,
and
J.M.Cunningham
(2005).
Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection.
|
| |
Science,
308,
1643-1645.
|
 |
|
|
|
|
 |
K.Miyauchi,
J.Komano,
Y.Yokomaku,
W.Sugiura,
N.Yamamoto,
and
Z.Matsuda
(2005).
Role of the specific amino acid sequence of the membrane-spanning domain of human immunodeficiency virus type 1 in membrane fusion.
|
| |
J Virol,
79,
4720-4729.
|
 |
|
|
|
|
 |
L.T.Cheng,
R.K.Plemper,
and
R.W.Compans
(2005).
Atypical fusion peptide of Nelson Bay virus fusion-associated small transmembrane protein.
|
| |
J Virol,
79,
1853-1860.
|
 |
|
|
|
|
 |
M.Tsurudome
(2005).
[Viral fusion mechanisms]
|
| |
Uirusu,
55,
207-219.
|
 |
|
|
|
|
 |
S.Liu,
H.Lu,
J.Niu,
Y.Xu,
S.Wu,
and
S.Jiang
(2005).
Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120.
|
| |
J Biol Chem,
280,
11259-11273.
|
 |
|
|
|
|
 |
V.Cheynet,
A.Ruggieri,
G.Oriol,
J.L.Blond,
B.Boson,
L.Vachot,
B.Verrier,
F.L.Cosset,
and
F.Mallet
(2005).
Synthesis, assembly, and processing of the Env ERVWE1/syncytin human endogenous retroviral envelope.
|
| |
J Virol,
79,
5585-5593.
|
 |
|
|
|
|
 |
V.Wahl-Jensen,
S.K.Kurz,
P.R.Hazelton,
H.J.Schnittler,
U.Ströher,
D.R.Burton,
and
H.Feldmann
(2005).
Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages.
|
| |
J Virol,
79,
2413-2419.
|
 |
|
|
|
|
 |
W.Ou,
and
J.Silver
(2005).
Inhibition of murine leukemia virus envelope protein (env) processing by intracellular expression of the env N-terminal heptad repeat region.
|
| |
J Virol,
79,
4782-4792.
|
 |
|
|
|
|
 |
B.Tripet,
M.W.Howard,
M.Jobling,
R.K.Holmes,
K.V.Holmes,
and
R.S.Hodges
(2004).
Structural characterization of the SARS-coronavirus spike S fusion protein core.
|
| |
J Biol Chem,
279,
20836-20849.
|
 |
|
|
|
|
 |
C.E.Garry,
and
R.F.Garry
(2004).
Proteomics computational analyses suggest that the carboxyl terminal glycoproteins of Bunyaviruses are class II viral fusion protein (beta-penetrenes).
|
| |
Theor Biol Med Model,
1,
10.
|
 |
|
|
|
|
 |
D.A.Sanders
(2004).
Ebola virus glycoproteins: guidance devices for targeting gene therapy vectors.
|
| |
Expert Opin Biol Ther,
4,
329-336.
|
 |
|
|
|
|
 |
P.Ingallinella,
E.Bianchi,
M.Finotto,
G.Cantoni,
D.M.Eckert,
V.M.Supekar,
C.Bruckmann,
A.Carfi,
and
A.Pessi
(2004).
Structural characterization of the fusion-active complex of severe acute respiratory syndrome (SARS) coronavirus.
|
| |
Proc Natl Acad Sci U S A,
101,
8709-8714.
|
 |
|
|
|
|
 |
R.C.Netter,
S.M.Amberg,
J.W.Balliet,
M.J.Biscone,
A.Vermeulen,
L.J.Earp,
J.M.White,
and
P.Bates
(2004).
Heptad repeat 2-based peptides inhibit avian sarcoma and leukosis virus subgroup a infection and identify a fusion intermediate.
|
| |
J Virol,
78,
13430-13439.
|
 |
|
|
|
|
 |
R.M.Markosyan,
P.Bates,
F.S.Cohen,
and
G.B.Melikyan
(2004).
A study of low pH-induced refolding of Env of avian sarcoma and leukosis virus into a six-helix bundle.
|
| |
Biophys J,
87,
3291-3298.
|
 |
|
|
|
|
 |
S.Bär,
and
M.Alizon
(2004).
Role of the ectodomain of the gp41 transmembrane envelope protein of human immunodeficiency virus type 1 in late steps of the membrane fusion process.
|
| |
J Virol,
78,
811-820.
|
 |
|
|
|
|
 |
S.Mahanty,
and
M.Bray
(2004).
Pathogenesis of filoviral haemorrhagic fevers.
|
| |
Lancet Infect Dis,
4,
487-498.
|
 |
|
|
|
|
 |
S.Watanabe,
T.Watanabe,
T.Noda,
A.Takada,
H.Feldmann,
L.D.Jasenosky,
and
Y.Kawaoka
(2004).
Production of novel ebola virus-like particles from cDNAs: an alternative to ebola virus generation by reverse genetics.
|
| |
J Virol,
78,
999.
|
 |
|
|
|
|
 |
V.M.Supekar,
C.Bruckmann,
P.Ingallinella,
E.Bianchi,
A.Pessi,
and
A.Carfí
(2004).
Structure of a proteolytically resistant core from the severe acute respiratory syndrome coronavirus S2 fusion protein.
|
| |
Proc Natl Acad Sci U S A,
101,
17958-17963.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Xu,
Y.Liu,
Z.Lou,
L.Qin,
X.Li,
Z.Bai,
H.Pang,
P.Tien,
G.F.Gao,
and
Z.Rao
(2004).
Structural basis for coronavirus-mediated membrane fusion. Crystal structure of mouse hepatitis virus spike protein fusion core.
|
| |
J Biol Chem,
279,
30514-30522.
|
 |
|
PDB codes:
|
 |
|
|
|
|
|
 |
Y.Xu,
Z.Lou,
Y.Liu,
H.Pang,
P.Tien,
G.F.Gao,
and
Z.Rao
(2004).
Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core.
|
| |
J Biol Chem,
279,
49414-49419.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
B.J.Bosch,
R.van der Zee,
C.A.de Haan,
and
P.J.Rottier
(2003).
The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex.
|
| |
J Virol,
77,
8801-8811.
|
 |
|
|
|
|
 |
E.Jeetendra,
K.Ghosh,
D.Odell,
J.Li,
H.P.Ghosh,
and
M.A.Whitt
(2003).
The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity.
|
| |
J Virol,
77,
12807-12818.
|
 |
|
|
|
|
 |
F.A.Carneiro,
F.Stauffer,
C.S.Lima,
M.A.Juliano,
L.Juliano,
and
A.T.Da Poian
(2003).
Membrane fusion induced by vesicular stomatitis virus depends on histidine protonation.
|
| |
J Biol Chem,
278,
13789-13794.
|
 |
|
|
|
|
 |
J.D.Piñón,
S.M.Kelly,
N.C.Price,
J.U.Flanagan,
and
D.W.Brighty
(2003).
An antiviral peptide targets a coiled-coil domain of the human T-cell leukemia virus envelope glycoprotein.
|
| |
J Virol,
77,
3281-3290.
|
 |
|
|
|
|
 |
J.Zhu,
Y.Ding,
F.Gao,
T.Wu,
C.W.Zhang,
P.Tien,
Z.Rao,
and
G.F.Gao
(2003).
Crystallization and preliminary X-ray crystallographic analysis of the trimer core from measles virus fusion protein.
|
| |
Acta Crystallogr D Biol Crystallogr,
59,
587-590.
|
 |
|
|
|
|
 |
L.K.Tamm,
J.Crane,
and
V.Kiessling
(2003).
Membrane fusion: a structural perspective on the interplay of lipids and proteins.
|
| |
Curr Opin Struct Biol,
13,
453-466.
|
 |
|
|
|
|
 |
N.Sullivan,
Z.Y.Yang,
and
G.J.Nabel
(2003).
Ebola virus pathogenesis: implications for vaccines and therapies.
|
| |
J Virol,
77,
9733-9737.
|
 |
|
|
|
|
 |
R.K.Plemper,
and
R.W.Compans
(2003).
Mutations in the putative HR-C region of the measles virus F2 glycoprotein modulate syncytium formation.
|
| |
J Virol,
77,
4181-4190.
|
 |
|
|
|
|
 |
Z.Han,
H.Boshra,
J.O.Sunyer,
S.H.Zwiers,
J.Paragas,
and
R.N.Harty
(2003).
Biochemical and functional characterization of the Ebola virus VP24 protein: implications for a role in virus assembly and budding.
|
| |
J Virol,
77,
1793-1800.
|
 |
|
|
|
|
 |
C.Grundner,
T.Mirzabekov,
J.Sodroski,
and
R.Wyatt
(2002).
Solid-phase proteoliposomes containing human immunodeficiency virus envelope glycoproteins.
|
| |
J Virol,
76,
3511-3521.
|
 |
|
|
|
|
 |
C.M.Finnegan,
W.Berg,
G.K.Lewis,
and
A.L.DeVico
(2002).
Antigenic properties of the human immunodeficiency virus transmembrane glycoprotein during cell-cell fusion.
|
| |
J Virol,
76,
12123-12134.
|
 |
|
|
|
|
 |
D.L.Gibbons,
and
M.Kielian
(2002).
Molecular dissection of the Semliki Forest virus homotrimer reveals two functionally distinct regions of the fusion protein.
|
| |
J Virol,
76,
1194-1205.
|
 |
|
|
|
|
 |
R.J.Center,
R.D.Leapman,
J.Lebowitz,
L.O.Arthur,
P.L.Earl,
and
B.Moss
(2002).
Oligomeric structure of the human immunodeficiency virus type 1 envelope protein on the virion surface.
|
| |
J Virol,
76,
7863-7867.
|
 |
|
|
|
|
 |
S.A.Jeffers,
D.A.Sanders,
and
A.Sanchez
(2002).
Covalent modifications of the ebola virus glycoprotein.
|
| |
J Virol,
76,
12463-12472.
|
 |
|
|
|
|
 |
A.L.Maerz,
H.E.Drummer,
K.A.Wilson,
and
P.Poumbourios
(2001).
Functional analysis of the disulfide-bonded loop/chain reversal region of human immunodeficiency virus type 1 gp41 reveals a critical role in gp120-gp41 association.
|
| |
J Virol,
75,
6635-6644.
|
 |
|
|
|
|
 |
D.M.Eckert,
and
P.S.Kim
(2001).
Mechanisms of viral membrane fusion and its inhibition.
|
| |
Annu Rev Biochem,
70,
777-810.
|
 |
|
|
|
|
 |
G.J.Nabel
(2001).
The Gordon Wilson Lecture: viruses and human disease.
|
| |
Trans Am Clin Climatol Assoc,
112,
79.
|
 |
|
|
|
|
 |
H.Garoff,
and
R.H.Cheng
(2001).
The missing link between envelope formation and fusion in alphaviruses.
|
| |
Trends Microbiol,
9,
408-410.
|
 |
|
|
|
|
 |
M.Li,
C.Yang,
and
R.W.Compans
(2001).
Mutations in the cytoplasmic tail of murine leukemia virus envelope protein suppress fusion inhibition by R peptide.
|
| |
J Virol,
75,
2337-2344.
|
 |
|
|
|
|
 |
M.Tsurudome,
M.Ito,
M.Nishio,
M.Kawano,
H.Komada,
and
Y.Ito
(2001).
Hemagglutinin-neuraminidase-independent fusion activity of simian virus 5 fusion (F) protein: difference in conformation between fusogenic and nonfusogenic F proteins on the cell surface.
|
| |
J Virol,
75,
8999-9009.
|
 |
|
|
|
|
 |
R.J.Center,
P.Schuck,
R.D.Leapman,
L.O.Arthur,
P.L.Earl,
B.Moss,
and
J.Lebowitz
(2001).
Oligomeric structure of virion-associated and soluble forms of the simian immunodeficiency virus envelope protein in the prefusion activated conformation.
|
| |
Proc Natl Acad Sci U S A,
98,
14877-14882.
|
 |
|
|
|
|
 |
S.Schreiber,
K.Ludwig,
A.Herrmann,
and
H.G.Holzhütter
(2001).
Stochastic simulation of hemagglutinin-mediated fusion pore formation.
|
| |
Biophys J,
81,
1360-1372.
|
 |
|
|
|
|
 |
V.N.Malashkevich,
M.Singh,
and
P.S.Kim
(2001).
The trimer-of-hairpins motif in membrane fusion: Visna virus.
|
| |
Proc Natl Acad Sci U S A,
98,
8502-8506.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.R.Gallaher,
C.DiSimone,
and
M.J.Buchmeier
(2001).
The viral transmembrane superfamily: possible divergence of Arenavirus and Filovirus glycoproteins from a common RNA virus ancestor.
|
| |
BMC Microbiol,
1,
1.
|
 |
|
|
|
|
 |
A.Dessen,
V.Volchkov,
O.Dolnik,
H.D.Klenk,
and
W.Weissenhorn
(2000).
Crystal structure of the matrix protein VP40 from Ebola virus.
|
| |
EMBO J,
19,
4228-4236.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
A.L.Maerz,
R.J.Center,
B.E.Kemp,
B.Kobe,
and
P.Poumbourios
(2000).
Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure.
|
| |
J Virol,
74,
6614-6621.
|
 |
|
|
|
|
 |
B.R.Lentz,
V.Malinin,
M.E.Haque,
and
K.Evans
(2000).
Protein machines and lipid assemblies: current views of cell membrane fusion.
|
| |
Curr Opin Struct Biol,
10,
607-615.
|
 |
|
|
|
|
 |
G.B.Melikyan,
R.M.Markosyan,
S.A.Brener,
Y.Rozenberg,
and
F.S.Cohen
(2000).
Role of the cytoplasmic tail of ecotropic moloney murine leukemia virus Env protein in fusion pore formation.
|
| |
J Virol,
74,
447-455.
|
 |
|
|
|
|
 |
J.J.Skehel,
and
D.C.Wiley
(2000).
Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin.
|
| |
Annu Rev Biochem,
69,
531-569.
|
 |
|
|
|
|
 |
J.K.Ghosh,
S.G.Peisajovich,
and
Y.Shai
(2000).
Sendai virus internal fusion peptide: structural and functional characterization and a plausible mode of viral entry inhibition.
|
| |
Biochemistry,
39,
11581-11592.
|
 |
|
|
|
|
 |
J.M.Binley,
R.W.Sanders,
B.Clas,
N.Schuelke,
A.Master,
Y.Guo,
F.Kajumo,
D.J.Anselma,
P.J.Maddon,
W.C.Olson,
and
J.P.Moore
(2000).
A recombinant human immunodeficiency virus type 1 envelope glycoprotein complex stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits is an antigenic mimic of the trimeric virion-associated structure.
|
| |
J Virol,
74,
627-643.
|
 |
|
|
|
|
 |
J.M.Matthews,
T.F.Young,
S.P.Tucker,
and
J.P.Mackay
(2000).
The core of the respiratory syncytial virus fusion protein is a trimeric coiled coil.
|
| |
J Virol,
74,
5911-5920.
|
 |
|
|
|
|
 |
K.K.Kim,
K.Min,
and
S.W.Suh
(2000).
Crystal structure of the ribosome recycling factor from Escherichia coli.
|
| |
EMBO J,
19,
2362-2370.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
P.D.Kwong,
R.Wyatt,
Q.J.Sattentau,
J.Sodroski,
and
W.A.Hendrickson
(2000).
Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus.
|
| |
J Virol,
74,
1961-1972.
|
 |
|
|
|
|
 |
R.Damico,
and
P.Bates
(2000).
Soluble receptor-induced retroviral infection of receptor-deficient cells.
|
| |
J Virol,
74,
6469-6475.
|
 |
|
|
|
|
 |
R.M.Markosyan,
F.S.Cohen,
and
G.B.Melikyan
(2000).
The lipid-anchored ectodomain of influenza virus hemagglutinin (GPI-HA) is capable of inducing nonenlarging fusion pores.
|
| |
Mol Biol Cell,
11,
1143-1152.
|
 |
|
|
|
|
 |
S.E.Delos,
and
J.M.White
(2000).
Critical role for the cysteines flanking the internal fusion peptide of avian sarcoma/leukosis virus envelope glycoprotein.
|
| |
J Virol,
74,
9738-9741.
|
 |
|
|
|
|
 |
S.Scianimanico,
G.Schoehn,
J.Timmins,
R.H.Ruigrok,
H.D.Klenk,
and
W.Weissenhorn
(2000).
Membrane association induces a conformational change in the Ebola virus matrix protein.
|
| |
EMBO J,
19,
6732-6741.
|
 |
|
|
|
|
 |
S.Watanabe,
A.Takada,
T.Watanabe,
H.Ito,
H.Kida,
and
Y.Kawaoka
(2000).
Functional importance of the coiled-coil of the Ebola virus glycoprotein.
|
| |
J Virol,
74,
10194-10201.
|
 |
|
|
|
|
 |
S.Y.Chan,
R.F.Speck,
M.C.Ma,
and
M.A.Goldsmith
(2000).
Distinct mechanisms of entry by envelope glycoproteins of Marburg and Ebola (Zaire) viruses.
|
| |
J Virol,
74,
4933-4937.
|
 |
|
|
|
|
 |
W.Shu,
J.Liu,
H.Ji,
L.Radigen,
S.Jiang,
and
M.Lu
(2000).
Helical interactions in the HIV-1 gp41 core reveal structural basis for the inhibitory activity of gp41 peptides.
|
| |
Biochemistry,
39,
1634-1642.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
W.Wickner,
and
A.Haas
(2000).
Yeast homotypic vacuole fusion: a window on organelle trafficking mechanisms.
|
| |
Annu Rev Biochem,
69,
247-275.
|
 |
|
|
|
|
 |
X.Yang,
L.Florin,
M.Farzan,
P.Kolchinsky,
P.D.Kwong,
J.Sodroski,
and
R.Wyatt
(2000).
Modifications that stabilize human immunodeficiency virus envelope glycoprotein trimers in solution.
|
| |
J Virol,
74,
4746-4754.
|
 |
|
|
|
|
 |
X.Zhao,
M.Singh,
V.N.Malashkevich,
and
P.S.Kim
(2000).
Structural characterization of the human respiratory syncytial virus fusion protein core.
|
| |
Proc Natl Acad Sci U S A,
97,
14172-14177.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
Y.Gaudin
(2000).
Rabies virus-induced membrane fusion pathway.
|
| |
J Cell Biol,
150,
601-612.
|
 |
|
|
|
|
 |
B.Kobe,
R.J.Center,
B.E.Kemp,
and
P.Poumbourios
(1999).
Crystal structure of human T cell leukemia virus type 1 gp21 ectodomain crystallized as a maltose-binding protein chimera reveals structural evolution of retroviral transmembrane proteins.
|
| |
Proc Natl Acad Sci U S A,
96,
4319-4324.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
H.Ito,
S.Watanabe,
A.Sanchez,
M.A.Whitt,
and
Y.Kawaoka
(1999).
Mutational analysis of the putative fusion domain of Ebola virus glycoprotein.
|
| |
J Virol,
73,
8907-8912.
|
 |
|
|
|
|
 |
J.C.Beauchamp,
and
N.W.Isaacs
(1999).
Methods for X-ray diffraction analysis of macromolecular structures.
|
| |
Curr Opin Chem Biol,
3,
525-529.
|
 |
|
|
|
|
 |
J.Chen,
J.J.Skehel,
and
D.C.Wiley
(1999).
N- and C-terminal residues combine in the fusion-pH influenza hemagglutinin HA(2) subunit to form an N cap that terminates the triple-stranded coiled coil.
|
| |
Proc Natl Acad Sci U S A,
96,
8967-8972.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
K.A.Baker,
R.E.Dutch,
R.A.Lamb,
and
T.S.Jardetzky
(1999).
Structural basis for paramyxovirus-mediated membrane fusion.
|
| |
Mol Cell,
3,
309-319.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
V.N.Malashkevich,
B.J.Schneider,
M.L.McNally,
M.A.Milhollen,
J.X.Pang,
and
P.S.Kim
(1999).
Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution.
|
| |
Proc Natl Acad Sci U S A,
96,
2662-2667.
|
 |
|
PDB code:
|
 |
|
|
|
|
|
 |
J.J.Skehel,
and
D.C.Wiley
(1998).
Coiled coils in both intracellular vesicle and viral membrane fusion.
|
| |
Cell,
95,
871-874.
|
 |
|
 |
 |
|
The most recent references are shown first.
Citation data come partly from CiteXplore and partly
from an automated harvesting procedure. Note that this is likely to be
only a partial list as not all journals are covered by
either method. However, we are continually building up the citation data
so more and more references will be included with time.
Where a reference describes a PDB structure, the PDB
code is
shown on the right.
|
');
}
}
 |