spacer
spacer

PDBsum entry 1c3d

Go to PDB code: 
protein ligands links
Complement PDB id
1c3d

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
294 a.a. *
Ligands
GOL ×5
Waters ×102
* Residue conservation analysis
PDB id:
1c3d
Name: Complement
Title: X-ray crystal structure of c3d: a c3 fragment and ligand for complement receptor 2
Structure: C3d. Chain: a. Engineered: yes. Mutation: yes
Source: Homo sapiens. Human. Organism_taxid: 9606. Cell_line: bl21. Cellular_location: serum. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
1.80Å     R-factor:   0.188     R-free:   0.230
Authors: B.Nagar,R.G.Jones,R.J.Diefenbach,D.E.Isenman,J.M.Rini
Key ref:
B.Nagar et al. (1998). X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2. Science, 280, 1277-1281. PubMed id: 9596584 DOI: 10.1126/science.280.5367.1277
Date:
19-May-98     Release date:   07-Oct-98    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P01024  (CO3_HUMAN) -  Complement C3 from Homo sapiens
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
 
Seq:
Struc:
1663 a.a.
294 a.a.*
Key:    Secondary structure  CATH domain
* PDB and UniProt seqs differ at 3 residue positions (black crosses)

 

 
DOI no: 10.1126/science.280.5367.1277 Science 280:1277-1281 (1998)
PubMed id: 9596584  
 
 
X-ray crystal structure of C3d: a C3 fragment and ligand for complement receptor 2.
B.Nagar, R.G.Jones, R.J.Diefenbach, D.E.Isenman, J.M.Rini.
 
  ABSTRACT  
 
Activation and covalent attachment of complement component C3 to pathogens is the key step in complement-mediated host defense. Additionally, the antigen-bound C3d fragment interacts with complement receptor 2 (CR2; also known as CD21) on B cells and thereby contributes to the initiation of an acquired humoral response. The x-ray crystal structure of human C3d solved at 2.0 angstroms resolution reveals an alpha-alpha barrel with the residues responsible for thioester formation and covalent attachment at one end and an acidic pocket at the other. The structure supports a model whereby the transition of native C3 to its functionally active state involves the disruption of a complementary domain interface and provides insight into the basis for the interaction between C3d and CR2.
 
  Selected figure(s)  
 
Figure 2.
Fig. 2. Sequence conservation of C3d. (A) Multiple sequence alignment of selected species of C3d and human C4d (B isotype) (21). Residues shaded in yellow are at least 90% buried in the^ C3d structure, and those shaded in red are residues composing the contiguous surface patch labeled in (B). Numbers correspond^ to the degree of conservation in C3d sequences only: 0 (not conserved) to A (highly conserved), as determined by the program AMAS (32). In human C4d, approximately 75% of the core residues, as well as the putative domain interface residues, are highly conserved^ [a conservation index (cons. index) of 7 or higher when included^ in the AMAS calculation], which suggests that it will adopt a^ similar fold and possess the analogous domain interface. The helical segments in human C3d are indicated by blue cylinders. [The figure^ was prepared with ALSCRIPT (35).] (B) Mapping of residue^ conservation as determined in (A) onto the surface of C3d; white^ (not conserved) to progressively darker red (highly conserved). [The figure was prepared with GRASP (36).] The conserved patch includes most of the surface apolar residues shown in Fig. 1C.
Figure 3.
Fig. 3. Stereo view of an electrostatic surface rendition of C3d, showing the acidic pocket on the concave end of the molecule. Acidic^ and basic residues are colored red and blue, respectively. Labeled^ are the surface-exposed residues that form the pocket. The contour level is at ±10 kT.
 
  The above figures are reprinted by permission from the AAAs: Science (1998, 280, 1277-1281) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
21485028 C.A.Kieslich, D.Morikis, J.Yang, and D.Gunopulos (2011).
Automated computational framework for the analysis of electrostatic similarities of proteins.
  Biotechnol Prog, 27, 316-325.  
21317894 H.P.Morgan, C.Q.Schmidt, M.Guariento, B.S.Blaum, D.Gillespie, A.P.Herbert, D.Kavanagh, H.D.Mertens, D.I.Svergun, C.M.Johansson, D.Uhrín, P.N.Barlow, and J.P.Hannan (2011).
Structural basis for engagement by complement factor H of C3b on a self surface.
  Nat Struct Mol Biol, 18, 463-470.
PDB code: 3oxu
21527715 J.M.van den Elsen, and D.E.Isenman (2011).
A crystal structure of the complex between human complement receptor 2 and its ligand C3d.
  Science, 332, 608-611.
PDB code: 3oed
21285368 T.Kajander, M.J.Lehtinen, S.Hyvärinen, A.Bhattacharjee, E.Leung, D.E.Isenman, S.Meri, A.Goldman, and T.S.Jokiranta (2011).
Dual interaction of factor H with C3d and glycosaminoglycans in host-nonhost discrimination by complement.
  Proc Natl Acad Sci U S A, 108, 2897-2902.
PDB code: 2xqw
20148704 D.Liu, J.Wang, and Z.X.Niu (2010).
Contribution of Chinese Pekin duck complement component C3d-P29 repeats to enhancement of Th2-biased immune responses against NDV F gene induced by DNA immunization.
  Immunopharmacol Immunotoxicol, 32, 297-306.  
20467445 D.Serruto, R.Rappuoli, M.Scarselli, P.Gros, and J.A.van Strijp (2010).
Molecular mechanisms of complement evasion: learning from staphylococci and meningococci.
  Nat Rev Microbiol, 8, 393-399.  
20010915 J.R.Dunkelberger, and W.C.Song (2010).
Complement and its role in innate and adaptive immune responses.
  Cell Res, 20, 34-50.  
18765250 M.G.Castillo, M.S.Goodson, and M.McFall-Ngai (2009).
Identification and molecular characterization of a complement C3 molecule in a lophotrochozoan, the Hawaiian bobtail squid Euprymna scolopes.
  Dev Comp Immunol, 33, 69-76.  
19351878 M.J.Lehtinen, A.L.Rops, D.E.Isenman, J.van der Vlag, and T.S.Jokiranta (2009).
Mutations of factor H impair regulation of surface-bound C3b by three mechanisms in atypical hemolytic uremic syndrome.
  J Biol Chem, 284, 15650-15658.  
18400970 D.Liu, J.Y.Zhu, and Z.X.Niu (2008).
Molecular structure and expression of anthropic, ovine, and murine forms of complement receptor type 2.
  Clin Vaccine Immunol, 15, 901-910.  
  19017934 D.Ricklin, S.K.Ricklin-Lichtsteiner, M.M.Markiewski, B.V.Geisbrecht, and J.D.Lambris (2008).
Cutting edge: members of the Staphylococcus aureus extracellular fibrinogen-binding protein family inhibit the interaction of C3d with complement receptor 2.
  J Immunol, 181, 7463-7467.  
18293486 H.Chen, M.C.Schuster, G.Sfyroera, B.V.Geisbrecht, and J.D.Lambris (2008).
Solution insights into the structure of the Efb/C3 complement inhibitory complex as revealed by lysine acetylation and mass spectrometry.
  J Am Soc Mass Spectrom, 19, 55-65.  
18434316 J.D.Burman, E.Leung, K.L.Atkins, M.N.O'Seaghdha, L.Lango, P.Bernadó, S.Bagby, D.I.Svergun, T.J.Foster, D.E.Isenman, and J.M.van den Elsen (2008).
Interaction of human complement with Sbi, a staphylococcal immunoglobulin-binding protein: indications of a novel mechanism of complement evasion by Staphylococcus aureus.
  J Biol Chem, 283, 17579-17593.  
18697741 N.Doan, and P.G.Gettins (2008).
alpha-Macroglobulins are present in some gram-negative bacteria: characterization of the alpha2-macroglobulin from Escherichia coli.
  J Biol Chem, 283, 28747-28756.  
18687868 N.Haspel, D.Ricklin, B.V.Geisbrecht, L.E.Kavraki, and J.D.Lambris (2008).
Electrostatic contributions drive the interaction between Staphylococcus aureus protein Efb-C and its complement target C3d.
  Protein Sci, 17, 1894-1906.
PDB codes: 3d5r 3d5s
18064050 P.Gros, F.J.Milder, and B.J.Janssen (2008).
Complement driven by conformational changes.
  Nat Rev Immunol, 8, 48-58.  
17989689 D.Ricklin, and J.D.Lambris (2007).
Complement-targeted therapeutics.
  Nat Biotechnol, 25, 1265-1275.  
17351618 M.Hammel, G.Sfyroera, D.Ricklin, P.Magotti, J.D.Lambris, and B.V.Geisbrecht (2007).
A structural basis for complement inhibition by Staphylococcus aureus.
  Nat Immunol, 8, 430-437.
PDB codes: 2gom 2gox
17445829 P.Roversi, O.Lissina, S.Johnson, N.Ahmat, G.C.Paesen, K.Ploss, W.Boland, M.A.Nunn, and S.M.Lea (2007).
The structure of OMCI, a novel lipocalin inhibitor of the complement system.
  J Mol Biol, 369, 784-793.
PDB codes: 2cm4 2cm9
17606907 R.H.Baxter, C.I.Chang, Y.Chelliah, S.Blandin, E.A.Levashina, and J.Deisenhofer (2007).
Structural basis for conserved complement factor-like function in the antimalarial protein TEP1.
  Proc Natl Acad Sci U S A, 104, 11615-11620.
PDB code: 2pn5
17051152 A.Abdul Ajees, K.Gunasekaran, J.E.Volanakis, S.V.Narayana, G.J.Kotwal, and H.M.Murthy (2006).
The structure of complement C3b provides insights into complement activation and regulation.
  Nature, 444, 221-225.
PDB code: 2hr0
17051160 B.J.Janssen, A.Christodoulidou, A.McCarthy, J.D.Lambris, and P.Gros (2006).
Structure of C3b reveals conformational changes that underlie complement activity.
  Nature, 444, 213-216.
PDB code: 2i07
17072314 G.Szakonyi, M.G.Klein, J.P.Hannan, K.A.Young, R.Z.Ma, R.Asokan, V.M.Holers, and X.S.Chen (2006).
Structure of the Epstein-Barr virus major envelope glycoprotein.
  Nat Struct Mol Biol, 13, 996.
PDB code: 2h6o
16473914 L.Zhang, and D.Morikis (2006).
Immunophysical properties and prediction of activities for vaccinia virus complement control protein and smallpox inhibitor of complement enzymes using molecular dynamics and electrostatics.
  Biophys J, 90, 3106-3119.  
17172439 N.Nishida, T.Walz, and T.A.Springer (2006).
Structural transitions of complement component C3 and its activation products.
  Proc Natl Acad Sci U S A, 103, 19737-19742.  
16601698 T.S.Jokiranta, V.P.Jaakola, M.J.Lehtinen, M.Pärepalo, S.Meri, and A.Goldman (2006).
Structure of complement factor H carboxyl-terminus reveals molecular basis of atypical haemolytic uremic syndrome.
  EMBO J, 25, 1784-1794.
PDB code: 2g7i
20477632 T.S.Jokiranta (2006).
C3b and factor H: key components of the complement system.
  Expert Rev Clin Immunol, 2, 775-786.  
16177781 B.J.Janssen, E.G.Huizinga, H.C.Raaijmakers, A.Roos, M.R.Daha, K.Nilsson-Ekdahl, B.Nilsson, and P.Gros (2005).
Structures of complement component C3 provide insights into the function and evolution of immunity.
  Nature, 437, 505-511.
PDB codes: 2a73 2a74
16041540 L.J.Dishaw, S.L.Smith, and C.H.Bigger (2005).
Characterization of a C3-like cDNA in a coral: phylogenetic implications.
  Immunogenetics, 57, 535-548.  
16177772 R.Liddington, and L.Bankston (2005).
Structural biology: origins of chemical biodefence.
  Nature, 437, 484-485.  
11976483 K.A.Kantardjieff, P.Höchtl, B.W.Segelke, F.M.Tao, and B.Rupp (2002).
Concanavalin A in a dimeric crystal form: revisiting structural accuracy and molecular flexibility.
  Acta Crystallogr D Biol Crystallogr, 58, 735-743.
PDB code: 1gkb
11257225 E.A.Levashina, L.F.Moita, S.Blandin, G.Vriend, M.Lagueux, and F.C.Kafatos (2001).
Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae.
  Cell, 104, 709-718.  
11207370 K.H.Murthy, S.A.Smith, V.K.Ganesh, K.W.Judge, N.Mullin, P.N.Barlow, C.M.Ogata, and G.J.Kotwal (2001).
Crystal structure of a complement control protein that regulates both pathways of complement activation and binds heparan sulfate proteoglycans.
  Cell, 104, 301-311.
PDB codes: 1g40 1g44
11264593 S.Sharma, T.Jabeen, R.K.Singh, R.Bredhorst, C.W.Vogel, C.Betzel, and T.P.Singh (2001).
Structural studies on the cobra venom factor: isolation, purification, crystallization and preliminary crystallographic analysis.
  Acta Crystallogr D Biol Crystallogr, 57, 596-598.  
10904110 D.Hourcade, M.K.Liszewski, M.Krych-Goldberg, and J.P.Atkinson (2000).
Functional domains, structural variations and pathogen interactions of MCP, DAF and CR1.
  Immunopharmacology, 49, 103-116.  
10675327 F.Vallée, F.Lipari, P.Yip, B.Sleno, A.Herscovics, and P.L.Howell (2000).
Crystal structure of a class I alpha1,2-mannosidase involved in N-glycan processing and endoplasmic reticulum quality control.
  EMBO J, 19, 581-588.
PDB code: 1dl2
10679403 G.Lindahl, U.Sjöbring, and E.Johnsson (2000).
Human complement regulators: a major target for pathogenic microorganisms.
  Curr Opin Immunol, 12, 44-51.  
10745007 H.Zhang, M.C.Seabra, and J.Deisenhofer (2000).
Crystal structure of Rab geranylgeranyltransferase at 2.0 A resolution.
  Structure, 8, 241-251.
PDB code: 1dce
11025450 M.Uwai, Y.Terui, Y.Mishima, H.Tomizuka, M.Ikeda, T.Itoh, M.Mori, M.Ueda, R.Inoue, M.Yamada, H.Hayasawa, T.Horiuchi, Y.Niho, M.Matsumoto, Y.Ishizaka, K.Ikeda, K.Ozawa, and K.Hatake (2000).
A new apoptotic pathway for the complement factor B-derived fragment Bb.
  J Cell Physiol, 185, 280-292.  
10771430 P.L.Howell, R.H.Blessing, G.D.Smith, and C.M.Weeks (2000).
Optimizing DREAR and SnB parameters for determining Se-atom substructures.
  Acta Crystallogr D Biol Crystallogr, 56, 604-617.  
10741859 W.M.Prodinger (1999).
Complement receptor type two (CR2,CR21): a target for influencing the humoral immune response and antigen-trapping.
  Immunol Res, 20, 187-194.  
10611272 W.S.Hlavacek, C.Wofsy, and A.S.Perelson (1999).
Dissociation of HIV-1 from follicular dendritic cells during HAART: mathematical analysis.
  Proc Natl Acad Sci U S A, 96, 14681-14686.  
9914899 A.W.Dodds, and S.K.Law (1998).
The phylogeny and evolution of the thioester bond-containing proteins C3, C4 and alpha 2-macroglobulin.
  Immunol Rev, 166, 15-26.  
9914901 J.O.Sunyer, and J.D.Lambris (1998).
Evolution and diversity of the complement system of poikilothermic vertebrates.
  Immunol Rev, 166, 39-57.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer