spacer
spacer

PDBsum entry 1bvt

Go to PDB code: 
protein ligands metals links
Hydrolase PDB id
1bvt

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
221 a.a. *
Ligands
BCT
Metals
_ZN ×2
Waters ×205
* Residue conservation analysis
PDB id:
1bvt
Name: Hydrolase
Title: Metallo-beta-lactamase from bacillus cereus 569/h/9
Structure: Protein (beta-lactamase). Chain: a. Synonym: class b beta-lactamase. Engineered: yes. Other_details: 100 micromolar zn in the buffer
Source: Bacillus cereus. Organism_taxid: 1396. Strain: dh1. Expressed in: escherichia coli. Expression_system_taxid: 562.
Resolution:
1.85Å     R-factor:   0.222     R-free:   0.269
Authors: A.Carfi,E.Duee,O.Dideberg
Key ref:
A.Carfi et al. (1998). 1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus. Acta Crystallogr D Biol Crystallogr, 54, 313-323. PubMed id: 9761898 DOI: 10.1107/S0907444997010627
Date:
18-Sep-98     Release date:   23-Sep-98    
Supersedes: 1bme
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
P04190  (BLA2_BACCE) -  Metallo-beta-lactamase type 2 from Bacillus cereus
Seq:
Struc:
257 a.a.
221 a.a.
Key:    Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.3.5.2.6  - beta-lactamase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

      Pathway:
Penicillin Biosynthesis and Metabolism
      Reaction: a beta-lactam + H2O = a substituted beta-amino acid
      Cofactor: Zn(2+)

 

 
DOI no: 10.1107/S0907444997010627 Acta Crystallogr D Biol Crystallogr 54:313-323 (1998)
PubMed id: 9761898  
 
 
1.85 A resolution structure of the zinc (II) beta-lactamase from Bacillus cereus.
A.Carfi, E.Duée, M.Galleni, J.M.Frère, O.Dideberg.
 
  ABSTRACT  
 
Class B beta-lactamases are wide spectrum enzymes which require bivalent metal ions for activity. The structure of the class B zinc-ion-dependent beta-lactamase from Bacillus cereus (BCII) has been refined at 1.85 A resolution using data collected on cryocooled crystals (100 K). The enzyme from B. cereus has a molecular mass of 24 946 Da and is folded into a beta-sandwich structure with helices on the external faces. The active site is located in a groove running between the two beta-sheets [Carfi et al. (1995). EMBO J. 14, 4914-4921]. The 100 K high-resolution BCII structure shows one fully and one partially occupied zinc sites. The zinc ion in the fully occupied site (the catalytic zinc) is coordinated by three histidines and one water molecule. The second zinc ion is at 3.7 A from the first one and is coordinated by one histidine, one cysteine, one aspartate and one unknown molecule (most likely a carbonate ion). In the B. cereus zinc beta-lactamase the affinity for the second metal-ion is low at the pH of crystallization (Kd = 25 mM, 293 K; [Baldwin et al. (1978). Biochem. J. 175, 441-447] and the dissociation constant of the second zinc ion was thus apparently decreased at the cryogenic temperature. In addition, the structure of the apo enzyme was determined at 2.5 A resolution. The removal of the zinc ion by chelating agents causes small changes in the active-site environment.
 
  Selected figure(s)  
 
Figure 6.
Ball-and-stick representation of the active-sites environment of BCII and B. fragilis zinc [\beta] -lactamases. The same orientation was used for the two views.
Figure 7.
Ball-and-stick representation of the active sites environment of holo and apo BCII. The same orientation was used for the two views. [Figure 8]-[gr0751fig8thm.gif] Figure 8 Stereoview of the C [\alpha] superposition of the apo (dotted lines) and holo (solid line) BCII.
 
  The above figures are reprinted by permission from the IUCr: Acta Crystallogr D Biol Crystallogr (1998, 54, 313-323) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20661759 J.Beck, L.Maton, J.L.Habib Jiwan, and J.Marchand-Brynaert (2011).
Calcium and zinc complexes of pyrroglutamate analogs detected by electrospray ionization mass spectrometry.
  Amino Acids, 40, 679-687.  
20305272 Y.Yamaguchi, N.Takashio, J.Wachino, Y.Yamagata, Y.Arakawa, K.Matsuda, and H.Kurosaki (2010).
Structure of metallo-beta-lactamase IND-7 from a Chryseobacterium indologenes clinical isolate at 1.65-A resolution.
  J Biochem, 147, 905-915.
PDB code: 3l6n
19039608 F.R.Salsbury, M.W.Crowder, S.F.Kingsmore, and J.J.Huntley (2009).
Molecular dynamic simulations of the metallo-beta-lactamase from Bacteroides fragilis in the presence and absence of a tight-binding inhibitor.
  J Mol Model, 15, 133-145.  
19395380 N.Selevsek, S.Rival, A.Tholey, E.Heinzle, U.Heinz, L.Hemmingsen, and H.W.Adolph (2009).
Zinc Ion-induced Domain Organization in Metallo-{beta}-lactamases: A FLEXIBLE "ZINC ARM" FOR RAPID METAL ION TRANSFER?
  J Biol Chem, 284, 16419-16431.  
18449576 A.Badarau, and M.I.Page (2008).
Loss of enzyme activity during turnover of the Bacillus cereus beta-lactamase catalysed hydrolysis of beta-lactams due to loss of zinc ion.
  J Biol Inorg Chem, 13, 919-928.  
18648861 A.Tamilselvi, and G.Mugesh (2008).
Zinc and antibiotic resistance: metallo-beta-lactamases and their synthetic analogues.
  J Biol Inorg Chem, 13, 1039-1053.  
18563261 B.M.Liénard, G.Garau, L.Horsfall, A.I.Karsisiotis, C.Damblon, P.Lassaux, C.Papamicael, G.C.Roberts, M.Galleni, O.Dideberg, J.M.Frère, and C.J.Schofield (2008).
Structural basis for the broad-spectrum inhibition of metallo-beta-lactamases by thiols.
  Org Biomol Chem, 6, 2282-2294.
PDB codes: 2qds 2qdt
17715135 L.I.Llarrull, M.F.Tioni, J.Kowalski, B.Bennett, and A.J.Vila (2007).
Evidence for a dinuclear active site in the metallo-beta-lactamase BcII with substoichiometric Co(II). A new model for metal uptake.
  J Biol Chem, 282, 30586-30595.  
16773613 G.Estiu, D.Suárez, and K.M.Merz (2006).
Quantum mechanical and molecular dynamics simulations of ureases and Zn beta-lactamases.
  J Comput Chem, 27, 1240-1262.  
16003817 B.Bauer-Siebenlist, S.Dechert, and F.Meyer (2005).
Biomimetic hydrolysis of penicillin G catalyzed by dinuclear zinc(II) complexes: structure-activity correlations in beta-lactamase model systems.
  Chemistry, 11, 5343-5352.  
15863831 C.Bebrone, C.Anne, K.De Vriendt, B.Devreese, G.M.Rossolini, J.Van Beeumen, J.M.Frère, and M.Galleni (2005).
Dramatic broadening of the substrate profile of the Aeromonas hydrophila CphA metallo-beta-lactamase by site-directed mutagenesis.
  J Biol Chem, 280, 28195-28202.  
15831827 T.R.Walsh, M.A.Toleman, L.Poirel, and P.Nordmann (2005).
Metallo-beta-lactamases: the quiet before the storm?
  Clin Microbiol Rev, 18, 306-325.  
15215079 G.Garau, I.García-Sáez, C.Bebrone, C.Anne, P.Mercuri, M.Galleni, J.M.Frère, and O.Dideberg (2004).
Update of the standard numbering scheme for class B beta-lactamases.
  Antimicrob Agents Chemother, 48, 2347-2349.  
14747990 M.Dal Peraro, A.J.Vila, and P.Carloni (2004).
Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
  Proteins, 54, 412-423.  
15140877 R.M.Rasia, and A.J.Vila (2004).
Structural determinants of substrate binding to Bacillus cereus metallo-beta-lactamase.
  J Biol Chem, 279, 26046-26051.  
12725860 C.Moali, C.Anne, J.Lamotte-Brasseur, S.Groslambert, B.Devreese, J.Van Beeumen, M.Galleni, and J.M.Frère (2003).
Analysis of the importance of the metallo-beta-lactamase active site loop in substrate binding and catalysis.
  Chem Biol, 10, 319-329.  
12684522 I.García-Saez, J.Hopkins, C.Papamicael, N.Franceschini, G.Amicosante, G.M.Rossolini, M.Galleni, J.M.Frère, and O.Dideberg (2003).
The 1.5-A structure of Chryseobacterium meningosepticum zinc beta-lactamase in complex with the inhibitor, D-captopril.
  J Biol Chem, 278, 23868-23873.
PDB code: 1m2x
12668674 U.Heinz, R.Bauer, S.Wommer, W.Meyer-Klaucke, C.Papamichaels, J.Bateson, and H.W.Adolph (2003).
Coordination geometries of metal ions in d- or l-captopril-inhibited metallo-beta-lactamases.
  J Biol Chem, 278, 20659-20666.  
11876827 A.L.Carenbauer, J.D.Garrity, G.Periyannan, R.B.Yates, and M.W.Crowder (2002).
Probing substrate binding to metallo-beta-lactamase L1 from Stenotrophomonas maltophilia by using site-directed mutagenesis.
  BMC Biochem, 3, 4.  
11940588 A.M.Simm, C.S.Higgins, A.L.Carenbauer, M.W.Crowder, J.H.Bateson, P.M.Bennett, A.R.Clarke, S.E.Halford, and T.R.Walsh (2002).
Characterization of monomeric L1 metallo-beta -lactamase and the role of the N-terminal extension in negative cooperativity and antibiotic hydrolysis.
  J Biol Chem, 277, 24744-24752.  
11484222 F.R.Salsbury, M.F.Crowley, and C.L.Brooks (2001).
Modeling of the metallo-beta-lactamase from B. fragilis: structural and dynamic effects of inhibitor binding.
  Proteins, 44, 448-459.  
11181369 G.M.Rossolini, M.A.Condemi, F.Pantanella, J.D.Docquier, G.Amicosante, and M.C.Thaller (2001).
Metallo-beta-lactamase producers in environmental microbiota: new molecular class B enzyme in Janthinobacterium lividum.
  Antimicrob Agents Chemother, 45, 837-844.  
11828452 I.Ponsard, M.Galleni, P.Soumillion, and J.Fastrez (2001).
Selection of metalloenzymes by catalytic activity using phage display and catalytic elution.
  Chembiochem, 2, 253-259.  
11181339 M.Galleni, J.Lamotte-Brasseur, G.M.Rossolini, J.Spencer, O.Dideberg, and J.M.Frère (2001).
Standard numbering scheme for class B beta-lactamases.
  Antimicrob Agents Chemother, 45, 660-663.  
10817705 L.Boschi, P.S.Mercuri, M.L.Riccio, G.Amicosante, M.Galleni, J.M.Frère, and G.M.Rossolini (2000).
The Legionella (Fluoribacter) gormanii metallo-beta-lactamase: a new member of the highly divergent lineage of molecular-subclass B3 beta-lactamases.
  Antimicrob Agents Chemother, 44, 1538-1543.  
  10933508 L.Chantalat, E.Duée, M.Galleni, J.M.Frère, and O.Dideberg (2000).
Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
  Protein Sci, 9, 1402-1406.
PDB code: 1dxk
10770756 M.L.Riccio, N.Franceschini, L.Boschi, B.Caravelli, G.Cornaglia, R.Fontana, G.Amicosante, and G.M.Rossolini (2000).
Characterization of the metallo-beta-lactamase determinant of Acinetobacter baumannii AC-54/97 reveals the existence of bla(IMP) allelic variants carried by gene cassettes of different phylogeny.
  Antimicrob Agents Chemother, 44, 1229-1235.  
10508780 A.D.Cameron, M.Ridderström, B.Olin, and B.Mannervik (1999).
Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue.
  Structure, 7, 1067-1078.
PDB codes: 1qh3 1qh5
  10518728 G.G.Hammond, J.L.Huber, M.L.Greenlee, J.B.Laub, K.Young, L.L.Silver, J.M.Balkovec, K.D.Pryor, J.K.Wu, B.Leiting, D.L.Pompliano, and J.H.Toney (1999).
Inhibition of IMP-1 metallo-beta-lactamase and sensitization of IMP-1-producing bacteria by thioester derivatives.
  FEMS Microbiol Lett, 179, 289-296.  
10508665 Z.Wang, W.Fast, A.M.Valentine, and S.J.Benkovic (1999).
Metallo-beta-lactamase: structure and mechanism.
  Curr Opin Chem Biol, 3, 614-622.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer