spacer
spacer

PDBsum entry 1bl9

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Oxidoreductase PDB id
1bl9

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
537 a.a. *
Ligands
HEC ×2
DHE ×2
_OH
Waters ×78
* Residue conservation analysis
PDB id:
1bl9
Name: Oxidoreductase
Title: Conformational changes occurring upon reduction in nitrite reductase from pseudomonas aeruginosa
Structure: Nitrite reductase. Chain: a, b. Other_details: d1 heme of subunit b has an hydroxide ion as an axial ligand
Source: Pseudomonas aeruginosa. Organism_taxid: 287. Atcc: nctc 6750. Collection: nctc 6750. Cellular_location: periplasmic space
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
2.90Å     R-factor:   0.211     R-free:   0.233
Authors: D.Nurizzo,C.Cambillau,M.Tegoni
Key ref:
D.Nurizzo et al. (1998). Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa. Biochemistry, 37, 13987-13996. PubMed id: 9760233 DOI: 10.1021/bi981348y
Date:
20-Jul-98     Release date:   27-Apr-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P24474  (NIRS_PSEAE) -  Nitrite reductase from Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1)
Seq:
Struc:
 
Seq:
Struc:
568 a.a.
537 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class 2: E.C.1.7.2.1  - nitrite reductase (NO-forming).
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: nitric oxide + Fe(III)-[cytochrome c] + H2O = Fe(II)-[cytochrome c] + nitrite + 2 H+
nitric oxide
+ Fe(III)-[cytochrome c]
+ H2O
Bound ligand (Het Group name = HEC)
matches with 63.64% similarity
= Fe(II)-[cytochrome c]
+ nitrite
+ 2 × H(+)
      Cofactor: Cu cation or Fe cation; FAD
Cu cation
or Fe cation
FAD
   Enzyme class 3: E.C.1.7.99.1  - hydroxylamine reductase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: A + NH4+ + H2O = hydroxylamine + AH2 + H+

+ NH4(+)
+ H2O
= hydroxylamine
+ AH2
+ 2 × H(+)
      Cofactor: Flavoprotein
Iron-sulfur
Note, where more than one E.C. class is given (as above), each may correspond to a different protein domain or, in the case of polyprotein precursors, to a different mature protein.
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    reference    
 
 
DOI no: 10.1021/bi981348y Biochemistry 37:13987-13996 (1998)
PubMed id: 9760233  
 
 
Conformational changes occurring upon reduction and NO binding in nitrite reductase from Pseudomonas aeruginosa.
D.Nurizzo, F.Cutruzzolà, M.Arese, D.Bourgeois, M.Brunori, C.Cambillau, M.Tegoni.
 
  ABSTRACT  
 
Nitrite reductase (NiR) from Pseudomonas aeruginosa (EC 1.9.3.2) (NiR-Pa) is a soluble enzyme catalyzing the reduction of nitrite (NO2-) to nitric oxide (NO). The enzyme is a 120 kDa homodimer, in which each monomer carries one c and one d1 heme. The oxidized and reduced forms of NiR from Paracoccus denitrificans GB17 (previously called Thiosphaera pantotropha) (NiR-Pd) have been described [Fülop, V., et al. (1995) Cell 81, 369-377; Williams, P. A., et al. (1997) Nature 389, 406-412], and we recently reported on the structure of oxidized NiR-Pa at 2.15 A [Nurizzo, D., et al. (1997) Structure 5, 1157-1171]. Although the domains carrying the d1 heme are almost identical in both NiR-Pa and NiR-Pd oxidized and reduced structures, the c heme domains show a different pattern of c heme coordination, depending on the species and the redox state. The sixth d1 heme ligand in oxidized NiR-Pd was found to be Tyr25, whereas in NiR-Pa, the homologuous Tyr10 does not interact directly with Fe3+, but via a hydroxide ion. Furthermore, upon reduction, the axial ligand of the c heme of NiR-Pd changes from His17 to Met108. Finally, in the oxidized NiR-Pa structure, the N-terminal stretch of residues (1-29) of one monomer interacts with the other monomer (domain swapping), which does not occur in NiR-Pd. Here the structure of reduced NiR-Pa is described both in the unbound form and with the physiological product, NO, bound at the d1 heme active site. Although both structures are similar to that of reduced NiR-Pd, significant differences with respect to oxidized NiR-Pd were observed in two regions: (i) a loop in the c heme domain (residues 56-62) is shifted 6 A away and (ii) the hydroxide ion, which is the sixth coordination ligand of the heme, is removed upon reduction and NO binding and the Tyr10 side chain rotates away from the position adopted in the oxidized form. The conformational changes observed in NiR-Pa as the result of reduction are less extensive than those occurring in NiR-Pd. Starting with oxidized structures that differ in many respects, the two enzymes converge, yielding reduced conformations which are very similar to each other, which indicates that the conformational changes involved in catalysis are considerably diverse.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
21265772 S.Rinaldo, G.Giardina, N.Castiglione, V.Stelitano, and F.Cutruzzolà (2011).
The catalytic mechanism of Pseudomonas aeruginosa cd1 nitrite reductase.
  Biochem Soc Trans, 39, 195-200.  
20490401 M.Radoul, M.Sundararajan, A.Potapov, C.Riplinger, F.Neese, and D.Goldfarb (2010).
Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations.
  Phys Chem Chem Phys, 12, 7276-7289.  
19554608 F.Cutruzzolà, S.Rinaldo, N.Castiglione, G.Giardina, I.Pecht, and M.Brunori (2009).
Nitrite reduction: a ubiquitous function from a pre-aerobic past.
  Bioessays, 31, 885-891.  
  19241371 K.Conrath, A.S.Pereira, C.E.Martins, C.G.Timóteo, P.Tavares, S.Spinelli, J.Kinne, C.Flaudrops, C.Cambillau, S.Muyldermans, I.Moura, J.J.Moura, M.Tegoni, and A.Desmyter (2009).
Camelid nanobodies raised against an integral membrane enzyme, nitric oxide reductase.
  Protein Sci, 18, 619-628.  
19348767 O.Farver, M.Brunori, F.Cutruzzolà, S.Rinaldo, S.Wherland, and I.Pecht (2009).
Intramolecular electron transfer in Pseudomonas aeruginosa cd(1) nitrite reductase: thermodynamics and kinetics.
  Biophys J, 96, 2849-2856.  
18274790 C.Xu, and G.S.Thomas (2008).
Ambidentate H-bonding by heme-bound NO: structural and spectral effects of -O versus -N H-bonding.
  J Biol Inorg Chem, 13, 613-621.  
17623666 J.H.van Wonderen, C.Knight, V.S.Oganesyan, S.J.George, W.G.Zumft, and M.R.Cheesman (2007).
Activation of the cytochrome cd1 nitrite reductase from Paracoccus pantotrophus. Reaction of oxidized enzyme with substrate drives a ligand switch at heme c.
  J Biol Chem, 282, 28207-28215.  
15942729 A.Karlsson, J.V.Parales, R.E.Parales, D.T.Gibson, H.Eklund, and S.Ramaswamy (2005).
NO binding to naphthalene dioxygenase.
  J Biol Inorg Chem, 10, 483-489.
PDB codes: 1uuv 1uuw
14517970 D.M.Copeland, A.H.West, and G.B.Richter-Addo (2003).
Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane.
  Proteins, 53, 182-192.
PDB codes: 1npf 1npg
12802018 O.Farver, P.M.Kroneck, W.G.Zumft, and I.Pecht (2003).
Allosteric control of internal electron transfer in cytochrome cd1 nitrite reductase.
  Proc Natl Acad Sci U S A, 100, 7622-7625.  
11226222 F.Cutruzzola, K.Brown, E.K.Wilson, A.Bellelli, M.Arese, M.Tegoni, C.Cambillau, and M.Brunori (2001).
The nitrite reductase from Pseudomonas aeruginosa: essential role of two active-site histidines in the catalytic and structural properties.
  Proc Natl Acad Sci U S A, 98, 2232-2237.  
11344301 F.Rousseau, J.W.Schymkowitz, H.R.Wilkinson, and L.S.Itzhaki (2001).
Three-dimensional domain swapping in p13suc1 occurs in the unfolded state and is controlled by conserved proline residues.
  Proc Natl Acad Sci U S A, 98, 5596-5601.  
11282344 I.Moura, and J.J.Moura (2001).
Structural aspects of denitrifying enzymes.
  Curr Opin Chem Biol, 5, 168-175.  
11456493 K.Kobayashi, A.Koppenhöfer, S.J.Ferguson, N.J.Watmough, and S.Tagawa (2001).
Intramolecular electron transfer from c heme to d1 heme in bacterial cytochrome cd1 nitrite reductase occurs over the same distances at very different rates depending on the source of the enzyme.
  Biochemistry, 40, 8542-8547.  
11060017 D.M.Lawson, C.E.Stevenson, C.R.Andrew, and R.R.Eady (2000).
Unprecedented proximal binding of nitric oxide to heme: implications for guanylate cyclase.
  EMBO J, 19, 5661-5671.
PDB codes: 1e83 1e84 1e85 1e86
10998232 G.Ranghino, E.Scorza, T.Sjögren, P.A.Williams, M.Ricci, and J.Hajdu (2000).
Quantum mechanical interpretation of nitrite reduction by cytochrome cd1 nitrite reductase from Paracoccus pantotrophus.
  Biochemistry, 39, 10958-10966.  
10348621 D.J.Richardson, and N.J.Watmough (1999).
Inorganic nitrogen metabolism in bacteria.
  Curr Opin Chem Biol, 3, 207-219.  
10329702 D.Nurizzo, F.Cutruzzolà, M.Arese, D.Bourgeois, M.Brunori, C.Cambillau, and M.Tegoni (1999).
Does the reduction of c heme trigger the conformational change of crystalline nitrite reductase?
  J Biol Chem, 274, 14997-15004.
PDB codes: 1n15 1n50 1n90
10320660 F.Cutruzzolà (1999).
Bacterial nitric oxide synthesis.
  Biochim Biophys Acta, 1411, 231-249.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB codes are shown on the right.

 

spacer

spacer