spacer
spacer

PDBsum entry 1aev

Go to PDB code: 
protein ligands links
Oxidoreductase PDB id
1aev

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chain
291 a.a. *
Ligands
HEM
AMT
Waters ×51
* Residue conservation analysis
PDB id:
1aev
Name: Oxidoreductase
Title: Introduction of novel substrate oxidation into cytochromE C peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme (2-aminothiazole)
Structure: CytochromE C peroxidase. Chain: a. Synonym: ccp/w191g. Engineered: yes. Mutation: yes. Other_details: crystal form mkt
Source: Saccharomyces cerevisiae. Baker's yeast. Organism_taxid: 4932. Cell_line: bl21. Organelle: mitochondria. Cellular_location: mitochondria. Gene: ccp. Expressed in: escherichia coli bl21(de3). Expression_system_taxid: 469008.
Resolution:
2.10Å     R-factor:   not given    
Authors: R.A.Musah,M.M.Fitzgerald,G.M.Jensen,D.E.Mcree,D.B.Goodin
Key ref: R.A.Musah and D.B.Goodin (1997). Introduction of novel substrate oxidation into cytochrome c peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme. Biochemistry, 36, 11665-11674. PubMed id: 9305956 DOI: 10.1021/bi9708038
Date:
25-Feb-97     Release date:   04-Sep-97    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chain
Pfam   ArchSchema ?
P00431  (CCPR_YEAST) -  Cytochrome c peroxidase, mitochondrial from Saccharomyces cerevisiae (strain ATCC 204508 / S288c)
Seq:
Struc:
361 a.a.
291 a.a.*
Key:    PfamA domain  Secondary structure  CATH domain
* PDB and UniProt seqs differ at 4 residue positions (black crosses)

 Enzyme reactions 
   Enzyme class: E.C.1.11.1.5  - cytochrome-c peroxidase.
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]
      Reaction: 2 Fe(II)-[cytochrome c] + H2O2 + 2 H+ = 2 Fe(III)-[cytochrome c] + 2 H2O
2 × Fe(II)-[cytochrome c]
+ H2O2
+ 2 × H(+)
= 2 × Fe(III)-[cytochrome c]
+ 2 × H2O
      Cofactor: Heme
Heme
Bound ligand (Het Group name = HEM) matches with 95.45% similarity
Molecule diagrams generated from .mol files obtained from the KEGG ftp site

 

 
    Added reference    
 
 
DOI no: 10.1021/bi9708038 Biochemistry 36:11665-11674 (1997)
PubMed id: 9305956  
 
 
Introduction of novel substrate oxidation into cytochrome c peroxidase by cavity complementation: oxidation of 2-aminothiazole and covalent modification of the enzyme.
R.A.Musah, D.B.Goodin.
 
  ABSTRACT  
 
The binding and oxidation of an artificial substrate, 2-aminothiazole, by an engineered cavity of cytochrome c peroxidase is described. The W191G mutant has been shown to create a buried cavity into which a number of small heterocyclic compounds will bind [Fitzgerald, M. M., Churchill, M. J., McRee, D. E., & Goodin, D. B. (1994) Biochemistry 33, 3807-3818], providing a specific site near the heme from which substrates might be oxidized. In this study, we show by titration calorimetry that 2-aminothiazole binds to W191G with a Kd of 0.028 mM at pH 6. A crystal structure at 2.3 A resolution of W191G in the presence of 2-aminothiazole reveals the occupation of this compound in the cavity, and indicates that it is in van der Waals contact with the heme. The WT enzyme reacts with H2O2 to form Compound ES, in which both the iron center and the Trp-191 side chain are reversibly oxidized. For the W191F (and perhaps the W191G) mutants, the iron is still oxidized, but the second equivalent exists transiently as a radical on the porphyrin before migrating to an alternate protein radical site [Erman, J. E., Vitello, L. B., Mauro, J. M., & Kraut, J. (1989) Biochemistry 28, 7992-7995]. Two separate reactions are observed between 2-aminothiazole and the oxidized centers of W191G. In the one reaction, optical and EPR spectra of the heme are used to show that 2-aminothiazole acts as an electron donor to the ferryl (Fe4+&dbd;O) center of W191G to reduce it to the ferric oxidation state. This reaction occurs from within the cavity, as it is not observed for variants that lack this artificial binding site. A second reaction between 2-aminothiazole and peroxide-oxidized W191G, which is much less efficient, results in the specific covalent modification of Tyr-236. Electrospray mass spectra of the W191G after incubation in 2-aminothiazole and H2O2 show a modification of the protein indicative of covalent binding of 2-aminothiazole. The site of modification was determined to be Tyr-236 by CNBr peptide mapping and automated peptide sequencing. The covalent modification is only observed for W191G and W191F which form the alternate radical center. This observation provides an unanticipated assignment of this free radical species to Tyr-236, which is consistent with previous proposals that it is a tyrosine. The oxidation of 2-aminothiazole by W191G represents an example of how the oxidative capacity inherent in the heme prosthetic group and the specific binding behavior of artificial protein cavities can be harnessed and redirected toward the oxidation of organic substrates.
 

Literature references that cite this PDB file's key reference

  PubMed id Reference
19072042 A.M.Hays Putnam, Y.T.Lee, and D.B.Goodin (2009).
Replacement of an electron transfer pathway in cytochrome c peroxidase with a surrogate peptide.
  Biochemistry, 48, 1-3.
PDB code: 3exb
18923851 S.W.Vetter, A.C.Terentis, R.L.Osborne, J.H.Dawson, and D.B.Goodin (2009).
Replacement of the axial histidine heme ligand with cysteine in nitrophorin 1: spectroscopic and crystallographic characterization.
  J Biol Inorg Chem, 14, 179-191.  
18418822 R.Baron, and J.A.McCammon (2008).
(Thermo)dynamic role of receptor flexibility, entropy, and motional correlation in protein-ligand binding.
  Chemphyschem, 9, 983-988.  
18196463 R.E.Amaro, R.Baron, and J.A.McCammon (2008).
An improved relaxed complex scheme for receptor flexibility in computer-aided drug design.
  J Comput Aided Mol Des, 22, 693-705.  
17334823 K.H.Kim (2007).
Outliers in SAR and QSAR: is unusual binding mode a possible source of outliers?
  J Comput Aided Mol Des, 21, 63-86.  
12538891 A.M.Hays, H.B.Gray, and D.B.Goodin (2003).
Trapping of peptide-based surrogates in an artificially created channel of cytochrome c peroxidase.
  Protein Sci, 12, 278-287.  
11967381 R.J.Rosenfeld, A.M.Hays, R.A.Musah, and D.B.Goodin (2002).
Excision of a proposed electron transfer pathway in cytochrome c peroxidase and its replacement by a ligand-binding channel.
  Protein Sci, 11, 1251-1259.
PDB codes: 1kxm 1kxn
11170452 J.Hirst, S.K.Wilcox, P.A.Williams, J.Blankenship, D.E.McRee, and D.B.Goodin (2001).
Replacement of the axial histidine ligand with imidazole in cytochrome c peroxidase. 1. Effects on structure.
  Biochemistry, 40, 1265-1273.
PDB codes: 1ds4 1dse 1dsg 1dso 1dsp
10722697 J.Hirst, and D.B.Goodin (2000).
Unusual oxidative chemistry of N(omega)-hydroxyarginine and N-hydroxyguanidine catalyzed at an engineered cavity in a heme peroxidase.
  J Biol Chem, 275, 8582-8591.
PDB codes: 1dj1 1dj5
10051582 T.Johjima, N.Itoh, M.Kabuto, F.Tokimura, T.Nakagawa, H.Wariishi, and H.Tanaka (1999).
Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium.
  Proc Natl Acad Sci U S A, 96, 1989-1994.  
9614074 A.Morimoto, M.Tanaka, S.Takahashi, K.Ishimori, H.Hori, and I.Morishima (1998).
Detection of a tryptophan radical as an intermediate species in the reaction of horseradish peroxidase mutant (Phe-221 --> Trp) and hydrogen peroxide.
  J Biol Chem, 273, 14753-14760.  
9667928 A.T.Smith, and N.C.Veitch (1998).
Substrate binding and catalysis in heme peroxidases.
  Curr Opin Chem Biol, 2, 269-278.  
9772164 N.H.Thomä, T.W.Meier, P.R.Evans, and P.F.Leadlay (1998).
Stabilization of radical intermediates by an active-site tyrosine residue in methylmalonyl-CoA mutase.
  Biochemistry, 37, 14386-14393.
PDB code: 5req
9591683 S.Kim, and B.A.Barry (1998).
The protein environment surrounding tyrosyl radicals D. and Z. in photosystem II: a difference Fourier-transform infrared spectroscopic study.
  Biophys J, 74, 2588-2600.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer