spacer
spacer

PDBsum entry 1a38

Go to PDB code: 
protein ligands Protein-protein interface(s) links
Complex (signal transduction/peptide) PDB id
1a38

 

 

 

 

Loading ...

 
JSmol PyMol  
Contents
Protein chains
216 a.a. *
Ligands
TRP-LEU-ASP-LEU-
GLU
×2
* Residue conservation analysis
PDB id:
1a38
Name: Complex (signal transduction/peptide)
Title: 14-3-3 protein zeta bound to r18 peptide
Structure: 14-3-3 protein zeta. Chain: a, b. Engineered: yes. R18 peptide (phcvprdlswldleanmclp). Chain: p, q. Engineered: yes
Source: Bos taurus. Cattle. Organism_taxid: 9913. Expressed in: escherichia coli. Expression_system_taxid: 562.
Biol. unit: Homo-Dimer (from PDB file)
Resolution:
3.35Å     R-factor:   0.330     R-free:   0.390
Authors: C.Petosa,S.C.Masters,J.Pohl,B.Wang,H.Fu,R.C.Liddington
Key ref:
C.Petosa et al. (1998). 14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove. J Biol Chem, 273, 16305-16310. PubMed id: 9632691 DOI: 10.1074/jbc.273.26.16305
Date:
28-Jan-98     Release date:   02-Mar-99    
PROCHECK
Go to PROCHECK summary
 Headers
 References

Protein chains
Pfam   ArchSchema ?
P63103  (1433Z_BOVIN) -  14-3-3 protein zeta/delta from Bos taurus
Seq:
Struc:
245 a.a.
216 a.a.
Key:    PfamA domain  Secondary structure  CATH domain

 Enzyme reactions 
   Enzyme class: E.C.?
[IntEnz]   [ExPASy]   [KEGG]   [BRENDA]

 

 
DOI no: 10.1074/jbc.273.26.16305 J Biol Chem 273:16305-16310 (1998)
PubMed id: 9632691  
 
 
14-3-3zeta binds a phosphorylated Raf peptide and an unphosphorylated peptide via its conserved amphipathic groove.
C.Petosa, S.C.Masters, L.A.Bankston, J.Pohl, B.Wang, H.Fu, R.C.Liddington.
 
  ABSTRACT  
 
14-3-3 proteins bind a variety of molecules involved in signal transduction, cell cycle regulation and apoptosis. 14-3-3 binds ligands such as Raf-1 kinase and Bad by recognizing the phosphorylated consensus motif, RSXpSXP, but must bind unphosphorylated ligands, such as glycoprotein Ib and Pseudomonas aeruginosa exoenzyme S, via a different motif. Here we report the crystal structures of the zeta isoform of 14-3-3 in complex with two peptide ligands: a Raf-derived phosphopeptide (pS-Raf-259, LSQRQRSTpSTPNVHMV) and an unphosphorylated peptide derived from phage display (R18, PHCVPRDLSWLDLEANMCLP) that inhibits binding of exoenzyme S and Raf-1. The two peptides bind within a conserved amphipathic groove on the surface of 14-3-3 at overlapping but distinct sites. The phosphoserine of pS-Raf-259 engages a cluster of basic residues (Lys49, Arg56, Arg60, and Arg127), whereas R18 binds via the amphipathic sequence, WLDLE, with its two acidic groups coordinating the same basic cluster. 14-3-3 is dimeric, and its two peptide-binding grooves are arranged in an antiparallel fashion, 30 A apart. The ability of each groove to bind different peptide motifs suggests how 14-3-3 can act in signal transduction by inducing either homodimer or heterodimer formation in its target proteins.
 
  Selected figure(s)  
 
Figure 1.
Fig. 1. Stereodiagram of the 14-3-3 monomer structure showing electron density for the pS-Raf-259 and R18 peptides. Helices forming the amphipathic groove are in white. In red is an F[o] F[c] map contoured at 2 calculated for crystals soaked in the a) pS-Raf-259 or b) R18 peptide. The maps are at 3.6 (A) and 3.35 Å (B) resolution using phases calculated from the protein model before inclusion of peptide atoms and improved by 4-fold noncrystallographic symmetry averaging, histogram matching, and solvent flattening in DM (25). The figure was produced with Bobscript (30) and Raster3D (31).
Figure 3.
Fig. 3. Amphipathicity and sequence conservation of the peptide-binding site. A, space-filling model of 14-3-3 with residues defining the amphipathic groove colored by side chain type: hydrophobic (green), polar (dark gray), acidic (red), and basic (blue). The pS-Raf-259 peptide backbone with its phosphoserine side chain is shown in yellow. Asp or Glu substitutions leading to reduced Raf binding3 (19) are marked with * (strong effect) or with ± (weak effect). B, the concave inner surface of 14-3-3 with residues invariant across 30 eukaryotic species in red (see also Table II). The R18 peptide is shown in green. None of the residues solvent-exposed on the rear, convex surface are invariant (not shown). C, close-up view of residues from helices 3, 5, 7, and 9 forming the amphipathic groove. All residues exposed in the groove are labeled except Gly53 and Gly169. The viewing orientation and coloring scheme are as in A. Residues boxed in solid or dashed lines correspond to those marked in A by * or ±, respectively. D, schematic of a 14-3-3 dimer with helices as cylinders showing bound Raf peptides with their phosphoserine side chains. The two peptides are oriented in an antiparallel fashion. The view is rotated by 90 ° around a horizontal axis compared with A-C, so that the dyad axis lies vertically in the plane of the page. The figure was produced with Molscript (32) and Raster3D (31).
 
  The above figures are reprinted by permission from the ASBMB: J Biol Chem (1998, 273, 16305-16310) copyright 1998.  
  Figures were selected by an automated process.  

Literature references that cite this PDB file's key reference

  PubMed id Reference
20110348 A.Singh, M.Ye, O.Bucur, S.Zhu, M.Tanya Santos, I.Rabinovitz, W.Wei, D.Gao, W.C.Hahn, and R.Khosravi-Far (2010).
Protein phosphatase 2A reactivates FOXO3a through a dynamic interplay with 14-3-3 and AKT.
  Mol Biol Cell, 21, 1140-1152.  
20976158 E.M.Ramser, G.Wolters, G.Dityateva, A.Dityatev, M.Schachner, and T.Tilling (2010).
The 14-3-3ζ protein binds to the cell adhesion molecule L1, promotes L1 phosphorylation by CKII and influences L1-dependent neurite outgrowth.
  PLoS One, 5, e13462.  
19920133 G.Messaritou, S.Grammenoudi, and E.M.Skoulakis (2010).
Dimerization is essential for 14-3-3zeta stability and function in vivo.
  J Biol Chem, 285, 1692-1700.  
19935702 L.M.Cockrell, M.C.Puckett, E.H.Goldman, F.R.Khuri, and H.Fu (2010).
Dual engagement of 14-3-3 proteins controls signal relay from ASK2 to the ASK1 signalosome.
  Oncogene, 29, 822-830.  
19933256 S.Rajagopalan, R.S.Sade, F.M.Townsley, and A.R.Fersht (2010).
Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms.
  Nucleic Acids Res, 38, 893-906.  
20519337 Z.T.Zhang, Y.Zhou, Y.Li, S.Q.Shao, B.Y.Li, H.Y.Shi, and X.B.Li (2010).
Interactome analysis of the six cotton 14-3-3s that are preferentially expressed in fibres and involved in cell elongation.
  J Exp Bot, 61, 3331-3344.  
19662078 B.Kostelecky, A.T.Saurin, A.Purkiss, P.J.Parker, and N.Q.McDonald (2009).
Recognition of an intra-chain tandem 14-3-3 binding site within PKCepsilon.
  EMBO Rep, 10, 983-989.
PDB code: 2wh0
19406750 S.S.Gangopadhyay, E.Kengni, S.Appel, C.Gallant, H.R.Kim, P.Leavis, J.DeGnore, and K.G.Morgan (2009).
Smooth muscle archvillin is an ERK scaffolding protein.
  J Biol Chem, 284, 17607-17615.  
19366886 S.Sun, E.W.Wong, M.W.Li, W.M.Lee, and C.Y.Cheng (2009).
14-3-3 and its binding partners are regulators of protein-protein interactions during spermatogenesis.
  J Endocrinol, 202, 327-336.  
  19513242 A.L.Paul, K.M.Folta, and R.J.Ferl (2008).
14-3-3 proteins, red light and photoperiodic flowering: A point of connection?
  Plant Signal Behav, 3, 511-515.  
18366598 C.J.Oldfield, J.Meng, J.Y.Yang, M.Q.Yang, V.N.Uversky, and A.K.Dunker (2008).
Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners.
  BMC Genomics, 9, S1.  
18550856 H.Takala, E.Nurminen, S.M.Nurmi, M.Aatonen, T.Strandin, M.Takatalo, T.Kiema, C.G.Gahmberg, J.Ylänne, and S.C.Fagerholm (2008).
Beta2 integrin phosphorylation on Thr758 acts as a molecular switch to regulate 14-3-3 and filamin binding.
  Blood, 112, 1853-1862.
PDB codes: 2jf1 2v7d
  19122826 J.Shankardas, M.Senchyna, and S.D.Dimitrijevich (2008).
Presence and distribution of 14-3-3 proteins in human ocular surface tissues.
  Mol Vis, 14, 2604-2615.  
18407517 M.M.Rosenberg, F.Yang, M.Giovanni, J.L.Mohn, M.K.Temburni, and M.H.Jacob (2008).
Adenomatous polyposis coli plays a key role, in vivo, in coordinating assembly of the neuronal nicotinic postsynaptic complex.
  Mol Cell Neurosci, 38, 138-152.  
18753613 P.Puri, K.Myers, D.Kline, and S.Vijayaraghavan (2008).
Proteomic analysis of bovine sperm YWHA binding partners identify proteins involved in signaling and metabolism.
  Biol Reprod, 79, 1183-1191.  
18812399 S.Rajagopalan, A.M.Jaulent, M.Wells, D.B.Veprintsev, and A.R.Fersht (2008).
14-3-3 activation of DNA binding of p53 by enhancing its association into tetramers.
  Nucleic Acids Res, 36, 5983-5991.  
19001422 S.Visconti, L.Camoni, M.Marra, and P.Aducci (2008).
Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase.
  Plant Cell Physiol, 49, 1887-1897.  
20161842 Y.Du, F.R.Khuri, and H.Fu (2008).
A homogenous luminescent proximity assay for 14-3-3 interactions with both phosphorylated and nonphosphorylated client peptides.
  Curr Chem Genomics, 2, 40-47.  
17646930 A.Medina, A.Ghaffari, R.T.Kilani, and A.Ghahary (2007).
The role of stratifin in fibroblast-keratinocyte interaction.
  Mol Cell Biochem, 305, 255-264.  
17651497 B.Pauly, M.Lasi, C.MacKintosh, N.Morrice, A.Imhof, J.Regula, S.Rudd, C.N.David, and A.Böttger (2007).
Proteomic screen in the simple metazoan Hydra identifies 14-3-3 binding proteins implicated in cellular metabolism, cytoskeletal organisation and Ca2+ signalling.
  BMC Cell Biol, 8, 31.  
17235285 C.Ottmann, L.Yasmin, M.Weyand, J.L.Veesenmeyer, M.H.Diaz, R.H.Palmer, M.S.Francis, A.R.Hauser, A.Wittinghofer, and B.Hallberg (2007).
Phosphorylation-independent interaction between 14-3-3 and exoenzyme S: from structure to pathogenesis.
  EMBO J, 26, 902-913.
PDB code: 2o02
17932789 O.Gileadi, S.Knapp, W.H.Lee, B.D.Marsden, S.Müller, F.H.Niesen, K.L.Kavanagh, L.J.Ball, F.von Delft, D.A.Doyle, U.C.Oppermann, and M.Sundström (2007).
The scientific impact of the Structural Genomics Consortium: a protein family and ligand-centered approach to medically-relevant human proteins.
  J Struct Funct Genomics, 8, 107-119.  
17256767 P.Luhn, H.Wang, A.I.Marcus, and H.Fu (2007).
Identification of FAKTS as a novel 14-3-3-associated nuclear protein.
  Proteins, 67, 479-489.  
17389761 S.Dong, S.Kang, T.L.Gu, S.Kardar, H.Fu, S.Lonial, H.J.Khoury, F.Khuri, and J.Chen (2007).
14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells.
  Blood, 110, 360-369.  
17430600 W.Yahyaoui, M.Callejo, G.B.Price, and M.Zannis-Hadjopoulos (2007).
Deletion of the cruciform binding domain in CBP/14-3-3 displays reduced origin binding and initiation of DNA replication in budding yeast.
  BMC Mol Biol, 8, 27.  
16678438 A.Aitken (2006).
14-3-3 proteins: a historic overview.
  Semin Cancer Biol, 16, 162-172.  
16678437 A.K.Gardino, S.J.Smerdon, and M.B.Yaffe (2006).
Structural determinants of 14-3-3 binding specificities and regulation of subcellular localization of 14-3-3-ligand complexes: a comparison of the X-ray crystal structures of all human 14-3-3 isoforms.
  Semin Cancer Biol, 16, 173-182.  
16444738 D.M.Bustos, and A.A.Iglesias (2006).
Intrinsic disorder is a key characteristic in partners that bind 14-3-3 proteins.
  Proteins, 63, 35-42.  
16697216 G.W.Porter, F.R.Khuri, and H.Fu (2006).
Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways.
  Semin Cancer Biol, 16, 193-202.  
16420486 L.Yasmin, A.L.Jansson, T.Panahandeh, R.H.Palmer, M.S.Francis, and B.Hallberg (2006).
Delineation of exoenzyme S residues that mediate the interaction with 14-3-3 and its biological activity.
  FEBS J, 273, 638-646.  
17085597 X.Yang, W.H.Lee, F.Sobott, E.Papagrigoriou, C.V.Robinson, J.G.Grossmann, M.Sundström, D.A.Doyle, and J.M.Elkins (2006).
Structural basis for protein-protein interactions in the 14-3-3 protein family.
  Proc Natl Acad Sci U S A, 103, 17237-17242.
PDB codes: 2bq0 2br9 2btp 2c23 2c63 2c74
15659648 A.L.Paul, P.C.Sehnke, R.J.Ferl, and R.J.Ferl (2005).
Isoform-specific subcellular localization among 14-3-3 proteins in Arabidopsis seems to be driven by client interactions.
  Mol Biol Cell, 16, 1735-1743.  
15389601 L.G.Rodriguez, and J.L.Guan (2005).
14-3-3 regulation of cell spreading and migration requires a functional amphipathic groove.
  J Cell Physiol, 202, 285-294.  
16359392 M.P.Sinnige, I.Roobeek, T.D.Bunney, A.J.Visser, J.N.Mol, and A.H.de Boer (2005).
Single amino acid variation in barley 14-3-3 proteins leads to functional isoform specificity in the regulation of nitrate reductase.
  Plant J, 44, 1001-1009.  
16246723 N.Macdonald, J.P.Welburn, M.E.Noble, A.Nguyen, M.B.Yaffe, D.Clynes, J.G.Moggs, G.Orphanides, S.Thomson, J.W.Edmunds, A.L.Clayton, J.A.Endicott, and L.C.Mahadevan (2005).
Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3.
  Mol Cell, 20, 199-211.
PDB codes: 2c1j 2c1n
15819880 W.Liao, S.Wang, C.Han, and Y.Zhang (2005).
14-3-3 proteins regulate glycogen synthase 3beta phosphorylation and inhibit cardiomyocyte hypertrophy.
  FEBS J, 272, 1845-1854.  
15139812 M.B.Yaffe, and S.J.Smerdon (2004).
The use of in vitro peptide-library screens in the analysis of phosphoserine/threonine-binding domain structure and function.
  Annu Rev Biophys Biomol Struct, 33, 225-244.  
15032850 R.J.Ferl (2004).
14-3-3 proteins: regulation of signal-induced events.
  Physiol Plant, 120, 173-178.  
12622836 D.C.Klein, S.Ganguly, S.L.Coon, Q.Shi, P.Gaildrat, F.Morin, J.L.Weller, T.Obsil, A.Hickman, and F.Dyda (2003).
14-3-3 proteins in pineal photoneuroendocrine transduction: how many roles?
  J Neuroendocrinol, 15, 370-377.  
12485398 J.G.Dai, and K.Murakami (2003).
Constitutively and autonomously active protein kinase C associated with 14-3-3 zeta in the rodent brain.
  J Neurochem, 84, 23-34.  
14559997 M.S.Chen, C.E.Ryan, and H.Piwnica-Worms (2003).
Chk1 kinase negatively regulates mitotic function of Cdc25A phosphatase through 14-3-3 binding.
  Mol Cell Biol, 23, 7488-7497.  
12606564 M.Würtele, C.Jelich-Ottmann, A.Wittinghofer, and C.Oecking (2003).
Structural view of a fungal toxin acting on a 14-3-3 regulatory complex.
  EMBO J, 22, 987-994.
PDB codes: 1o9c 1o9d 1o9e 1o9f
14551260 Y.H.Shen, J.Godlewski, A.Bronisz, J.Zhu, M.J.Comb, J.Avruch, and G.Tzivion (2003).
Significance of 14-3-3 self-dimerization for phosphorylation-dependent target binding.
  Mol Biol Cell, 14, 4721-4733.  
12360521 A.B.Truong, S.C.Masters, H.Yang, and H.Fu (2002).
Role of the 14-3-3 C-terminal loop in ligand interaction.
  Proteins, 49, 321-325.  
11864996 A.Brunet, F.Kanai, J.Stehn, J.Xu, D.Sarbassova, J.V.Frangioni, S.N.Dalal, J.A.DeCaprio, M.E.Greenberg, and M.B.Yaffe (2002).
14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport.
  J Cell Biol, 156, 817-828.  
12242289 F.Ozoe, R.Kurokawa, Y.Kobayashi, H.T.Jeong, K.Tanaka, K.Sen, T.Nakagawa, H.Matsuda, and M.Kawamukai (2002).
The 14-3-3 proteins Rad24 and Rad25 negatively regulate Byr2 by affecting its localization in Schizosaccharomyces pombe.
  Mol Cell Biol, 22, 7105-7119.  
11862948 J.Yan, J.Wang, and H.Zhang (2002).
An ankyrin repeat-containing protein plays a role in both disease resistance and antioxidation metabolism.
  Plant J, 29, 193-202.  
12383250 M.L.Henriksson, M.S.Francis, A.Peden, M.Aili, K.Stefansson, R.Palmer, A.Aitken, and B.Hallberg (2002).
A nonphosphorylated 14-3-3 binding motif on exoenzyme S that is functional in vivo.
  Eur J Biochem, 269, 4921-4929.  
  12184815 R.J.Ferl, M.S.Manak, and M.F.Reyes (2002).
The 14-3-3s.
  Genome Biol, 3, REVIEWS3010.  
11969417 T.Ichimura, A.Wakamiya-Tsuruta, C.Itagaki, M.Taoka, T.Hayano, T.Natsume, and T.Isobe (2002).
Phosphorylation-dependent interaction of kinesin light chain 2 and the 14-3-3 protein.
  Biochemistry, 41, 5566-5572.  
12077328 Y.Light, H.Paterson, and R.Marais (2002).
14-3-3 antagonizes Ras-mediated Raf-1 recruitment to the plasma membrane to maintain signaling fidelity.
  Mol Cell Biol, 22, 4984-4996.  
11410287 H.Yang, S.C.Masters, H.Wang, and H.Fu (2001).
The proapoptotic protein Bad binds the amphipathic groove of 14-3-3zeta.
  Biochim Biophys Acta, 1547, 313-319.  
11737199 J.Voigt, I.Liebich, M.Kiess, and R.Frank (2001).
Subcellular distribution of 14-3-3 proteins in the unicellular green alga Chlamydomonas reinhardtii.
  Eur J Biochem, 268, 6449-6457.  
11447594 M.J.van Hemert, G.P.van Heusden, and H.Y.Steensma (2001).
Yeast 14-3-3 proteins.
  Yeast, 18, 889-895.  
11598960 M.J.van Hemert, H.Y.Steensma, and G.P.van Heusden (2001).
14-3-3 proteins: key regulators of cell division, signalling and apoptosis.
  Bioessays, 23, 936-946.  
11336675 T.Obsil, R.Ghirlando, D.C.Klein, S.Ganguly, and F.Dyda (2001).
Crystal structure of the 14-3-3zeta:serotonin N-acetyltransferase complex. a role for scaffolding in enzyme regulation.
  Cell, 105, 257-267.
PDB code: 1ib1
10836149 H.Fu, R.R.Subramanian, and S.C.Masters (2000).
14-3-3 proteins: structure, function, and regulation.
  Annu Rev Pharmacol Toxicol, 40, 617-647.  
11019808 M.R.Roberts (2000).
Regulatory 14-3-3 protein-protein interactions in plant cells.
  Curr Opin Plant Biol, 3, 400-405.  
10488331 K.Rittinger, J.Budman, J.Xu, S.Volinia, L.C.Cantley, S.J.Smerdon, S.J.Gamblin, and M.B.Yaffe (1999).
Structural analysis of 14-3-3 phosphopeptide complexes identifies a dual role for the nuclear export signal of 14-3-3 in ligand binding.
  Mol Cell, 4, 153-166.
PDB codes: 1qja 1qjb
10411906 L.Zhang, J.Chen, and H.Fu (1999).
Suppression of apoptosis signal-regulating kinase 1-induced cell death by 14-3-3 proteins.
  Proc Natl Acad Sci U S A, 96, 8511-8515.  
10361086 M.R.Groves, and D.Barford (1999).
Topological characteristics of helical repeat proteins.
  Curr Opin Struct Biol, 9, 383-389.  
10463061 S.A.Bustin, and I.A.McKay (1999).
The product of the primary response gene BRF1 inhibits the interaction between 14-3-3 proteins and cRaf-1 in the yeast trihybrid system.
  DNA Cell Biol, 18, 653-661.  
10088721 S.C.Luk, S.M.Ngai, S.K.Tsui, K.P.Fung, C.Y.Lee, and M.M.Waye (1999).
In vivo and in vitro association of 14-3-3 epsilon isoform with calmodulin: implication for signal transduction and cell proliferation.
  J Cell Biochem, 73, 31-35.  
15012211 W.H.Campbell (1999).
NITRATE REDUCTASE STRUCTURE, FUNCTION AND REGULATION: Bridging the Gap between Biochemistry and Physiology.
  Annu Rev Plant Physiol Plant Mol Biol, 50, 277-303.  
9822578 P.G.Bertram, C.Zeng, J.Thorson, A.S.Shaw, and X.F.Zheng (1998).
The 14-3-3 proteins positively regulate rapamycin-sensitive signaling.
  Curr Biol, 8, 1259-1267.  
The most recent references are shown first. Citation data come partly from CiteXplore and partly from an automated harvesting procedure. Note that this is likely to be only a partial list as not all journals are covered by either method. However, we are continually building up the citation data so more and more references will be included with time. Where a reference describes a PDB structure, the PDB code is shown on the right.

 

spacer

spacer